spark安装

1、下载地址 http://spark.apache.org/downloads.html

2、解压

tar -zxvf spark-2.4.4-bin-hadoop2.7.tgz -C /opt/module/

 

3、本地模式运行第一个程

bin/spark-submit --class org.apache.spark.examples.SparkPi --executor-memory 1G --total-executor-cores 2 ./examples/jars/spark-examples_2.11-2.4.4.jar 200
... ...
19/09/05 11:13:27 INFO Executor: Running task 198.0 in stage 0.0 (TID 198)
19/09/05 11:13:27 INFO Executor: Finished task 198.0 in stage 0.0 (TID 198). 824 bytes result sent to driver
19/09/05 11:13:27 INFO TaskSetManager: Starting task 199.0 in stage 0.0 (TID 199, localhost, executor driver, partition 199, PROCESS_LOCAL, 7866 bytes)
19/09/05 11:13:27 INFO TaskSetManager: Finished task 198.0 in stage 0.0 (TID 198) in 6 ms on localhost (executor driver) (199/200)
19/09/05 11:13:27 INFO Executor: Running task 199.0 in stage 0.0 (TID 199)
19/09/05 11:13:27 INFO Executor: Finished task 199.0 in stage 0.0 (TID 199). 781 bytes result sent to driver
19/09/05 11:13:27 INFO TaskSetManager: Finished task 199.0 in stage 0.0 (TID 199) in 9 ms on localhost (executor driver) (200/200)
19/09/05 11:13:27 INFO TaskSchedulerImpl: Removed TaskSet 0.0, whose tasks have all completed, from pool 
19/09/05 11:13:27 INFO DAGScheduler: ResultStage 0 (reduce at SparkPi.scala:38) finished in 3.129 s
19/09/05 11:13:27 INFO DAGScheduler: Job 0 finished: reduce at SparkPi.scala:38, took 3.262553 s
Pi is roughly 3.1416157570807877
19/09/05 11:13:27 INFO SparkUI: Stopped Spark web UI at http://vmhome10.com:4040
19/09/05 11:13:27 INFO MapOutputTrackerMasterEndpoint: MapOutputTrackerMasterEndpoint stopped!
19/09/05 11:13:27 INFO MemoryStore: MemoryStore cleared
19/09/05 11:13:27 INFO BlockManager: BlockManager stopped
19/09/05 11:13:27 INFO BlockManagerMaster: BlockManagerMaster stopped
19/09/05 11:13:27 INFO OutputCommitCoordinator$OutputCommitCoordinatorEndpoint: OutputCommitCoordinator stopped!
19/09/05 11:13:27 INFO SparkContext: Successfully stopped SparkContext
19/09/05 11:13:27 INFO ShutdownHookManager: Shutdown hook called
19/09/05 11:13:27 INFO ShutdownHookManager: Deleting directory /tmp/spark-7a49f112-3630-4ef6-b4dc-1c46af32c133
19/09/05 11:13:27 INFO ShutdownHookManager: Deleting directory /tmp/spark-6ee58588-7298-4623-b10b-6310e628060d

参数说明:

./bin/spark-submit \
--class <main-class>
--master <master-url> \
--deploy-mode <deploy-mode> \
--conf <key>=<value> \
... # other options
<application-jar> \
[application-arguments]
参数说明:
--master spark://vmhome10.com:7077 指定Master的地址
--class: 你的应用的启动类 (如 org.apache.spark.examples.SparkPi)
--deploy-mode: 是否发布你的驱动到worker节点(cluster) 或者作为一个本地客户端 (client) (default: client)*
--conf: 任意的Spark配置属性, 格式key=value. 如果值包含空格,可以加引号“key=value” 
application-jar: 打包好的应用jar,包含依赖. 这个URL在集群中全局可见。 比如hdfs:// 共享存储系统, 如果是 file:// path, 那么所有的节点的path都包含同样的jar
application-arguments: 传给main()方法的参数
--executor-memory 1G 指定每个executor可用内存为1G
--total-executor-cores 2 指定每个executor使用的cup核数为2个

 

 

4、进入shell编程模式

bin/spark-shell
19/09/05 11:42:00 WARN NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
Using Spark's default log4j profile: org/apache/spark/log4j-defaults.properties
Setting default log level to "WARN".
To adjust logging level use sc.setLogLevel(newLevel). For SparkR, use setLogLevel(newLevel).
Spark context Web UI available at http://vmhome10.com:4040
Spark context available as 'sc' (master = local[*], app id = local-1567654930914).
Spark session available as 'spark'.
Welcome to
      ____              __
     / __/__  ___ _____/ /__
    _\ \/ _ \/ _ `/ __/  '_/
   /___/ .__/\_,_/_/ /_/\_\   version 2.4.4
      /_/
         
Using Scala version 2.11.12 (Java HotSpot(TM) 64-Bit Server VM, Java 1.8.0_201)
Type in expressions to have them evaluated.
Type :help for more information.

 如果启动spark shell时没有指定master地址,但是也可以正常启动spark shell和执行spark shell中的程序,其实是启动了spark的local模式,该模式仅在本机启动一个进程,没有与集群建立联系.

 

带参数启动shell:

bin/spark-shell \
--master spark://vmhome10.com:7077 \
--executor-memory 1g \
--total-executor-cores 2

 

Spark Shell中已经默认将SparkContext类初始化为对象sc。用户代码如果需要用到,则直接应用sc即可,  sparksession  是sparksql

在shell中执行wordcount。

scala> sc.textFile("/home/hadoop/1.txt").flatMap(_.split(",")).map((_,1)).reduceByKey(_+_).collect
res2: Array[(String, Int)] = Array((192.168.1.1,2), (mytest,1), (wow,5), (1990,1), (xu.dm,4), (192.168.1.3,1), (dnf,4), (sword,2), (192.168.1.2,2), (hdfs,2), (blade,2), (2000,3))

 

 
posted @ 2019-09-05 11:44  我是属车的  阅读(586)  评论(0编辑  收藏  举报