flink PageRank详解(批量迭代的页面排名算法的基本实现)

1、PageRank算法原理

 

2、基本数据准备

/**
 *  numPages缺省15个测试页面
 *
 *  EDGES表示从一个pageId指向相连的另外一个pageId
 */
public class PageRankData {

    public static final Object[][] EDGES = {
            {1L, 2L},
            {1L, 15L},
            {2L, 3L},
            {2L, 4L},
            {2L, 5L},
            {2L, 6L},
            {2L, 7L},
            {3L, 13L},
            {4L, 2L},
            {5L, 11L},
            {5L, 12L},
            {6L, 1L},
            {6L, 7L},
            {6L, 8L},
            {7L, 1L},
            {7L, 8L},
            {8L, 1L},
            {8L, 9L},
            {8L, 10L},
            {9L, 14L},
            {9L, 1L},
            {10L, 1L},
            {10L, 13L},
            {11L, 12L},
            {11L, 1L},
            {12L, 1L},
            {13L, 14L},
            {14L, 12L},
            {15L, 1L},
    };

    private static int numPages = 15;

    public static DataSet<Tuple2<Long, Long>> getDefaultEdgeDataSet(ExecutionEnvironment env) {

        List<Tuple2<Long, Long>> edges = new ArrayList<Tuple2<Long, Long>>();
        for (Object[] e : EDGES) {
            edges.add(new Tuple2<Long, Long>((Long) e[0], (Long) e[1]));
        }
        return env.fromCollection(edges);
    }

    public static DataSet<Long> getDefaultPagesDataSet(ExecutionEnvironment env) {
        return env.generateSequence(1, 15);
    }

    public static int getNumberOfPages() {
        return numPages;
    }

}

3、算法实现

/**
 * @Description: 使用批量迭代的页面排名算法的基本实现。
 * 此实现需要一组页面和一组有向链接作为输入,并按如下方式工作。
 * 在每次迭代中,每个页面的等级均匀分布到它指向的所有页面。每个页面收集指向它的所有页面的部分等级,对它们求和,并对总和应用阻尼因子。结果是页面的新排名。使用所有页面的新等级开始新的迭代。该实现在固定次数的迭代之后终止。
 * 这是页面排名算法的维基百科条目。
 *
 * 输入文件是纯文本文件,必须格式如下:
 *
 * 页面表示为由新行字符分隔的(长)ID。
 * 例如,"1\n2\n12\n42\n63"给出五个页面ID为1,2,12,42和63的页面。
 * 链接表示为页面ID对,由空格字符分隔。链接由换行符分隔。
 * 例如,"1 2\n2 12\n1 12\n42 63"给出四个(定向)链接(1) - >(2),(2) - >(12),(1) - >(12)和(42) - >(63)。
 * 对于这个简单的实现,要求每个页面至少有一个传入链接和一个传出链接(页面可以指向自身)。
 * 用法:PageRankBasic --pages <path> --links <path> --output <path> --numPages <n> --iterations <n>
 *  如果未提供参数,则使用{@link PageRankData}中的默认数据和10次迭代运行程序。
 *
 **/

 

public class PageRank {
    //阻尼系数
    private static final double DAMPENING_FACTOR = 0.85;
    //收敛阈值.
    private static final double EPSILON = 0.0001;

    private static DataSet<Long> getPagesDataSet(ExecutionEnvironment env, ParameterTool params) {
        if (params.has("pages")) {
            return env.readCsvFile(params.get("params"))
                    .fieldDelimiter(" ")
                    .lineDelimiter("\n")
                    .types(Long.class)
                    .map(new MapFunction<Tuple1<Long>, Long>() {
                        @Override
                        public Long map(Tuple1<Long> value) throws Exception {
                            return value.f0;
                        }
                    });
        } else {
            System.out.println("Executing PageRank example with default pages data set.");
            System.out.println("Use --pages to specify file input.");
            return PageRankData.getDefaultPagesDataSet(env);
        }
    }

    private static DataSet<Tuple2<Long, Long>> getLinksDataSet(ExecutionEnvironment env, ParameterTool params) {
        if (params.has("links")) {
            return env.readCsvFile(params.get("links"))
                    .fieldDelimiter(" ")
                    .lineDelimiter("\n")
                    .types(Long.class, Long.class);
        } else {
            System.out.println("Executing PageRank example with default links data set.");
            System.out.println("Use --links to specify file input.");
            return PageRankData.getDefaultEdgeDataSet(env);
        }
    }

    public static void main(String[] args) throws Exception {
        ParameterTool params = ParameterTool.fromArgs(args);
        final int numPages = params.getInt("numPages", PageRankData.getNumberOfPages());
        final int maxIterations = params.getInt("iterations", 10);

        // set up execution environment
        final ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();

        // make the parameters available to the web ui
        env.getConfig().setGlobalJobParameters(params);

        // get input data
        DataSet<Long> pagesInput = getPagesDataSet(env, params);
        DataSet<Tuple2<Long, Long>> linksInput = getLinksDataSet(env, params);

        // assign initial rank to pages
        DataSet<Tuple2<Long, Double>> pagesWithRanks = pagesInput
                .map(new RankAssigner(1.0d / numPages));

        // build adjacency list from link input
        DataSet<Tuple2<Long, Long[]>> adjacencyListInput = linksInput
                .groupBy(0)
                .reduceGroup(new BuildOutgoingEdgeList());

        // set iterative data set
        IterativeDataSet<Tuple2<Long, Double>> iteration = pagesWithRanks.iterate(maxIterations);

        DataSet<Tuple2<Long, Double>> newRanks = iteration.join(adjacencyListInput)
                .where(0).equalTo(0)
                //迭代算子
                .flatMap(new JoinVertexWithEdgesMatch())
                // collect and sum ranks
                .groupBy(0)
                .aggregate(Aggregations.SUM, 1)
                // apply dampening factor
                .map(new Dampener(PageRank.DAMPENING_FACTOR, numPages));

        //如果没有达到收敛条件,循环10次后结束
        DataSet<Tuple2<Long, Double>> finalPageRanks = iteration.closeWith(
                newRanks,
                newRanks.join(iteration).where(0).equalTo(0)
                        // termination condition
                        .filter(new EpsilonFilter()));

        // emit result
        if (params.has("output")) {
            finalPageRanks.writeAsCsv(params.get("output"), "\n", " ");
            // execute program
            env.execute("Basic Page Rank Example");
        } else {
            System.out.println("Printing result to stdout. Use --output to specify output path.");
            finalPageRanks.print();
        }
    }

    /**
     * A map function that assigns an initial rank to all pages.
     */
    public static final class RankAssigner implements MapFunction<Long, Tuple2<Long, Double>> {
        Tuple2<Long, Double> outPageWithRank;

        public RankAssigner(double rank) {
            this.outPageWithRank = new Tuple2<>(-1L, rank);
        }

        @Override
        public Tuple2<Long, Double> map(Long value) throws Exception {
            outPageWithRank.f0 = value;
            return outPageWithRank;
        }
    }

    /**
     * A reduce function that takes a sequence of edges and builds the adjacency list for the vertex where the edges
     * originate. Run as a pre-processing step.
     * 将分组后的links数据按Id放入Tuple2<Long, Long[]>
     * 与hadoop的mapreduce的reduce部分类似,groupby就是shuffle
     */
    @FunctionAnnotation.ForwardedFields("0")
    public static final class BuildOutgoingEdgeList implements GroupReduceFunction<Tuple2<Long, Long>, Tuple2<Long, Long[]>> {

        private final ArrayList<Long> neighbors = new ArrayList<Long>();

        @Override
        public void reduce(Iterable<Tuple2<Long, Long>> values, Collector<Tuple2<Long, Long[]>> out) {
            neighbors.clear();
            Long id = 0L;

            for (Tuple2<Long, Long> n : values) {
                id = n.f0;
                neighbors.add(n.f1);
                System.out.println("id: " + id + " ,neighbors: " + n.f1);
            }
            out.collect(new Tuple2<Long, Long[]>(id, neighbors.toArray(new Long[neighbors.size()])));
        }
    }

    /**
     * Join function that distributes a fraction of a vertex's rank to all neighbors.
     * 按照页面id以及其连接页面的数量,重新计算相邻点的rank,迭代10次
     * rankToDistribute就是计算了顶点(id)指向边(neighbors)的贡献值,neighbors最终的rank值需要合计后才能算出
     */
    public static final class JoinVertexWithEdgesMatch implements FlatMapFunction<Tuple2<Tuple2<Long, Double>, Tuple2<Long, Long[]>>, Tuple2<Long, Double>> {

        @Override
        public void flatMap(Tuple2<Tuple2<Long, Double>, Tuple2<Long, Long[]>> value, Collector<Tuple2<Long, Double>> out) {
            System.out.println("before:" + value);
            Long[] neighbors = value.f1.f1;
            double rank = value.f0.f1;
            double rankToDistribute = rank / ((double) neighbors.length);

            for (Long neighbor : neighbors) {
//                System.out.println("neighbor:" + neighbor + ",rankToDistribute:" + rankToDistribute);
                out.collect(new Tuple2<Long, Double>(neighbor, rankToDistribute));
            }
        }
    }

    /**
     * The function that applies the page rank dampening formula.
     * 阻尼系数公式:PR(A)=(1-d)/N + d(PR(T1)/C(T1)+ ... +PR(Tn)/C(Tn))
     * PR(A) 是页面A的PR值
     * PR(Ti)是页面Ti的PR值,在这里,页面Ti是指向A的所有页面中的某个页面
     * C(Ti)是页面Ti的出度,也就是Ti指向其他页面的边的个数
     * d 为阻尼系数,其意义是,在任意时刻,用户到达某页面后并继续向后浏览的概率,
     * 该数值是根据上网者使用浏览器书签的平均频率估算而得,通常d=0.85
     */
    @FunctionAnnotation.ForwardedFields("0")
    public static final class Dampener implements MapFunction<Tuple2<Long, Double>, Tuple2<Long, Double>> {

        private final double dampening;
        private final double randomJump;

        public Dampener(double dampening, double numVertices) {
            this.dampening = dampening;
            this.randomJump = (1 - dampening) / numVertices;
        }

        @Override
        public Tuple2<Long, Double> map(Tuple2<Long, Double> value) {
            value.f1 = (value.f1 * dampening) + randomJump;
            return value;
        }
    }

    /**
     * Filter that filters vertices where the rank difference is below a threshold.
     * 如果迭代之间的参数之和低于此EPSILON,我们将会收敛
     * 每次迭代后都会调用Filter判断是否要退出迭代
     */
    public static final class EpsilonFilter implements FilterFunction<Tuple2<Tuple2<Long, Double>, Tuple2<Long, Double>>> {

        @Override
        public boolean filter(Tuple2<Tuple2<Long, Double>, Tuple2<Long, Double>> value) {
            System.out.println("value:"+value+",math:"+Math.abs(value.f0.f1 - value.f1.f1));
            return Math.abs(value.f0.f1 - value.f1.f1) > EPSILON;
        }
    }

}

 

posted @ 2019-06-10 20:30  我是属车的  阅读(907)  评论(0编辑  收藏  举报