hadoop 使用Avro求最大值

在上例中:hadoop MapReduce辅助排序解析,为了求每年的最大数据使用了mapreduce辅助排序的方法。

本例中介绍利用Avro这个序列化框架的mapreduce功能来实现求取最大值。Avro的优点在这里不做扩展。

1、依赖引入,不使用插件

        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-client</artifactId>
            <version>3.2.0</version>
        </dependency>

        <dependency>
            <groupId>org.apache.avro</groupId>
            <artifactId>avro-mapred</artifactId>
            <version>1.8.2</version>
        </dependency>

2、定义Avro数据结构,样本依然使用上例的数据样本,只有年份和数据两个字段。

Avro数据结构应该是这样:
{
	"type":"record",
	"name":"WeatherRecord",
	"doc":"A weather reading",
	"fields":[
		{"name":"year","type":"int"},
		{"name":"temperature","type":"int"}
	]	
}

本例中直接定义为常量,也可以根据需求直接从文件中读入,各有优劣。

public class AvroSchemas {
    public static final Schema SCHEMA = new Schema.Parser().parse("{\n" +
            "\t\"type\":\"record\",\n" +
            "\t\"name\":\"WeatherRecord\",\n" +
            "\t\"doc\":\"A weather reading\",\n" +
            "\t\"fields\":[\n" +
            "\t\t{\"name\":\"year\",\"type\":\"int\"},\n" +
            "\t\t{\"name\":\"temperature\",\"type\":\"int\"}\n" +
            "\t]\t\n" +
            "}");

}

3、mapper

public class AvroMapper extends Mapper<LongWritable,Text,AvroKey<Integer>,AvroValue<GenericRecord>> {
    private RecordParser parser = new RecordParser();
    private GenericRecord record = new GenericData.Record(AvroSchemas.SCHEMA);

    @Override
    protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
        parser.parse(value.toString());
        if(parser.isValid()){
            record.put("year",parser.getYear());
            record.put("temperature",parser.getData());
            context.write(new AvroKey<>(parser.getYear()),new AvroValue<>(record));
        }
    }
}

4、reducer

public class AvroReducer extends Reducer<AvroKey<Integer>,AvroValue<GenericRecord>,AvroKey<GenericRecord>,NullWritable> {

    @Override
    protected void reduce(AvroKey<Integer> key, Iterable<AvroValue<GenericRecord>> values, Context context) throws IOException, InterruptedException {
        GenericRecord max = null;
        for (AvroValue<GenericRecord> value : values){
            GenericRecord record = value.datum();
            if(max==null ||
                    (Integer)record.get("temperature") > (Integer) max.get("temperature")){
                //必须重新生成GenericRecord,不能直接max=record进行对象引用
                //迭代算法为了高效,直接重用了实例
                max = newRecord(record);
            }
        }
        context.write(new AvroKey<>(max),NullWritable.get());
    }

    private GenericRecord newRecord(GenericRecord value){
        GenericRecord record = new GenericData.Record(AvroSchemas.SCHEMA);
        record.put("year",value.get("year"));
        record.put("temperature",value.get("temperature"));

        return record;
    }
}

5、job,这里是关键,和普通job所有区别

public class AvroSort extends Configured implements Tool {
    /**
     * Execute the command with the given arguments.
     *
     * @param args command specific arguments.
     * @return exit code.
     * @throws Exception
     */
    @Override
    public int run(String[] args) throws Exception {
        Configuration conf = getConf();
        conf.set("mapreduce.job.ubertask.enable","true");

        Job job = Job.getInstance(conf,"Avro sort");
        job.setJarByClass(AvroSort.class);

        //通过AvroJob直接设置Avro key和value的输入和输出,而不是使用Job来设置
        AvroJob.setMapOutputKeySchema(job, Schema.create(Schema.Type.INT));
        AvroJob.setMapOutputValueSchema(job,AvroSchemas.SCHEMA);
        AvroJob.setOutputKeySchema(job,AvroSchemas.SCHEMA);

        job.setMapperClass(AvroMapper.class);
        job.setReducerClass(AvroReducer.class);

        job.setInputFormatClass(TextInputFormat.class);
        job.setOutputFormatClass(AvroKeyOutputFormat.class);
        //也可以输出文本格式,AvroKey会被转换成json文本模式
//        job.setOutputFormatClass(TextOutputFormat.class);

        FileInputFormat.addInputPath(job,new Path(args[0]));
        FileOutputFormat.setOutputPath(job,new Path(args[1]));

        Path outPath = new Path(args[1]);
        FileSystem fileSystem = outPath.getFileSystem(conf);
        //删除输出路径
        if(fileSystem.exists(outPath))
        {
            fileSystem.delete(outPath,true);
        }

        return job.waitForCompletion(true) ? 0:1;
    }

    public static void main(String[] args) throws Exception{
        int exitCode = ToolRunner.run(new AvroSort(),args);
        System.exit(exitCode);
    }
}

6、查看Avro文件,需要下载Avro的工具jar包avro-tools-1.8.2.jar,官方镜像链接: https://mirrors.tuna.tsinghua.edu.cn/apache/avro/avro-1.8.2/java/avro-tools-1.8.2.jar

[hadoop@bigdata-senior01 ~]$ java -jar avro-tools-1.8.2.jar tojson part-r-00000.avro 
log4j:WARN No appenders could be found for logger (org.apache.hadoop.metrics2.lib.MutableMetricsFactory).
log4j:WARN Please initialize the log4j system properly.
log4j:WARN See http://logging.apache.org/log4j/1.2/faq.html#noconfig for more info.
{"year":1990,"temperature":100}
{"year":1991,"temperature":100}
{"year":1992,"temperature":100}
{"year":1993,"temperature":100}
{"year":1994,"temperature":100}
{"year":1995,"temperature":100}
{"year":1996,"temperature":100}
{"year":1997,"temperature":100}
{"year":1998,"temperature":100}
{"year":1999,"temperature":100}
{"year":2000,"temperature":100}

如果job中,使用的是文本输出,那么直接使用cat就可以查看。

[hadoop@bigdata-senior01 ~]$ hadoop fs -cat /output6/part-r-00000
{"year": 1990, "temperature": 100}
{"year": 1991, "temperature": 100}
{"year": 1992, "temperature": 100}
{"year": 1993, "temperature": 100}
{"year": 1994, "temperature": 100}
{"year": 1995, "temperature": 100}
{"year": 1996, "temperature": 100}
{"year": 1997, "temperature": 100}
{"year": 1998, "temperature": 100}
{"year": 1999, "temperature": 100}
{"year": 2000, "temperature": 100}

 

posted @ 2019-02-26 11:21  我是属车的  阅读(291)  评论(0编辑  收藏  举报