hadoop 使用map合并小文件到SequenceFile

上一例是直接用SequenceFile的createWriter来实现,本例采用mapreduce的方式。

1、把小文件整体读入需要自定义InputFormat格式,自定义InputFormat格式需要先定义RecordReader读取方式,为了整体读入,RecordReader使用一次性读入所有字节。

1.1 继承RecordReader泛型,重写这个类。

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FSDataInputStream;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.BytesWritable;
import org.apache.hadoop.io.IOUtils;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.mapreduce.InputSplit;
import org.apache.hadoop.mapreduce.RecordReader;
import org.apache.hadoop.mapreduce.TaskAttemptContext;
import org.apache.hadoop.mapreduce.lib.input.FileSplit;

import java.io.IOException;

public class WholeFileRecordReader extends RecordReader<NullWritable,BytesWritable> {
    private FileSplit fileSplit;
    private Configuration conf;
    private BytesWritable value = new BytesWritable();
    private boolean processed = false;
    /**
     * Called once at initialization.
     *
     * @param split   the split that defines the range of records to read
     * @param context the information about the task
     * @throws IOException
     * @throws InterruptedException
     */
    @Override
    public void initialize(InputSplit split, TaskAttemptContext context) throws IOException, InterruptedException {
        this.fileSplit = (FileSplit) split;
        this.conf = context.getConfiguration();
    }

    /**
     * Read the next key, value pair.
     *
     * @return true if a key/value pair was read
     * @throws IOException
     * @throws InterruptedException
     */
    @Override
    public boolean nextKeyValue() throws IOException, InterruptedException {
        if(!processed){
            byte[] contents = new byte[(int)fileSplit.getLength()];
            Path file = fileSplit.getPath();
            FileSystem fs = file.getFileSystem(conf);
            FSDataInputStream in = null;
            try {
                in = fs.open(file);
                IOUtils.readFully(in,contents,0,contents.length);//一次全部读取
                value.set(contents,0,contents.length);
            }finally {
                IOUtils.closeStream(in);
            }
            processed = true;
            return true;
        }

        return false;
    }

    /**
     * Get the current key
     *
     * @return the current key or null if there is no current key
     * @throws IOException
     * @throws InterruptedException
     */
    @Override
    public NullWritable getCurrentKey() throws IOException, InterruptedException {
        return NullWritable.get();
    }

    /**
     * Get the current value.
     *
     * @return the object that was read
     * @throws IOException
     * @throws InterruptedException
     */
    @Override
    public BytesWritable getCurrentValue() throws IOException, InterruptedException {
        return value;
    }

    /**
     * The current progress of the record reader through its data.
     *
     * @return a number between 0.0 and 1.0 that is the fraction of the data read
     * @throws IOException
     * @throws InterruptedException
     */
    @Override
    public float getProgress() throws IOException, InterruptedException {
        return processed ? 1.0f:0.0f;
    }

    /**
     * Close the record reader.
     */
    @Override
    public void close() throws IOException {

    }
}

1.2 继承FileInputFormat泛型,重写文件输入格式

import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.BytesWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.mapreduce.InputSplit;
import org.apache.hadoop.mapreduce.JobContext;
import org.apache.hadoop.mapreduce.RecordReader;
import org.apache.hadoop.mapreduce.TaskAttemptContext;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;

import java.io.IOException;


public class WholeFileInputFormat extends FileInputFormat<NullWritable,BytesWritable> {
    /**
     * Is the given filename splittable? Usually, true, but if the file is
     * stream compressed, it will not be.
     * <p>
     * The default implementation in <code>FileInputFormat</code> always returns
     * true. Implementations that may deal with non-splittable files <i>must</i>
     * override this method.
     * <p>
     * <code>FileInputFormat</code> implementations can override this and return
     * <code>false</code> to ensure that individual input files are never split-up
     * so that  process entire files.
     *
     * @param context  the job context
     * @param filename the file name to check
     * @return is this file splitable?
     */
    @Override
    protected boolean isSplitable(JobContext context, Path filename) {
        return false;//文件不分片,为了整体读入
    }

    /**
     * Create a record reader for a given split. The framework will call
     * {@link RecordReader#initialize(InputSplit, TaskAttemptContext)} before
     * the split is used.
     *
     * @param split   the split to be read
     * @param context the information about the task
     * @return a new record reader
     * @throws IOException
     * @throws InterruptedException
     */
    @Override
    public RecordReader<NullWritable, BytesWritable> createRecordReader(InputSplit split, TaskAttemptContext context) throws IOException, InterruptedException {
        WholeFileRecordReader recordReader = new WholeFileRecordReader();
        recordReader.initialize(split,context);
        return recordReader;
    }
}

2、MAPPER,不要写reduce,本例只是合并文件。

public class SequenceFileMapper extends Mapper<NullWritable,BytesWritable,Text,BytesWritable> {
    enum FileCounter {
        FILENUM
    }
    private Text filenameKey;
    /**
     * Called once at the beginning of the task.
     *
     * @param context
     */
    @Override
    protected void setup(Context context) throws IOException, InterruptedException {
        InputSplit split = context.getInputSplit();
        Path path = ((FileSplit)split).getPath();
        filenameKey = new Text(path.toString());
    }

    /**
     * Called once for each key/value pair in the input split. Most applications
     * should override this, but the default is the identity function.
     *
     * @param key
     * @param value
     * @param context
     */
    @Override
    protected void map(NullWritable key, BytesWritable value, Context context) throws IOException, InterruptedException {
        context.write(filenameKey,value);
        //自定义计数器
        context.getCounter(FileCounter.FILENUM).increment(1);
        //动态计数器
        context.getCounter("FileNameList",filenameKey.toString()).increment(1);
    }
}

 

3、执行job,使用辅助类Tool,也可以不用,直接写job执行就可以。

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.BytesWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.SequenceFileOutputFormat;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;

public class SmallFilesToSequenceFileConverter extends Configured implements Tool {

    /**
     * Execute the command with the given arguments.
     *
     * @param args command specific arguments.
     * @return exit code.
     * @throws Exception
     */
    @Override
    public int run(String[] args) throws Exception {
        Configuration conf = getConf();
        if(conf==null){
            return -1;
        }

        Path outPath = new Path(args[1]);
        FileSystem fileSystem = outPath.getFileSystem(conf);
        //删除输出路径
        if(fileSystem.exists(outPath))
        {
            fileSystem.delete(outPath,true);
        }

        Job job = Job.getInstance(conf,"SmallFilesToSequenceFile");
        job.setJarByClass(SmallFilesToSequenceFileConverter.class);

        job.setMapperClass(SequenceFileMapper.class);

        job.setInputFormatClass(WholeFileInputFormat.class);
        job.setOutputFormatClass(SequenceFileOutputFormat.class);

        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(BytesWritable.class);



        FileInputFormat.addInputPath(job,new Path(args[0]));
        FileOutputFormat.setOutputPath(job,new Path(args[1]));


        return job.waitForCompletion(true) ? 0:1;
    }

    public static void main(String[] args) throws Exception{
        long startTime = System.currentTimeMillis();

        int exitCode = ToolRunner.run(new SmallFilesToSequenceFileConverter(),args);
        System.exit(exitCode);

        long endTime = System.currentTimeMillis();
        long timeSpan = endTime - startTime;
        System.out.println("运行耗时:"+timeSpan+"毫秒。");
    }
}

4、上传集群运行,打包成jar包的时候把META-INF目录和src目录放同级,防止找不到函数入口。

#手动调整reduce数量为2,运算后会生成两个part
[hadoop@bigdata-senior01 ~]$ hadoop jar SmallFilesToSequenceFileConverter.jar -D mapreduce.job.reduces=2 /demo /output3


...
[hadoop@bigdata-senior01 ~]$ hadoop fs -ls /output3
Found 3 items
-rw-r--r--   1 hadoop supergroup          0 2019-02-18 16:17 /output3/_SUCCESS
-rw-r--r--   1 hadoop supergroup      60072 2019-02-18 16:17 /output3/part-r-00000
-rw-r--r--   1 hadoop supergroup      28520 2019-02-18 16:17 /output3/part-r-00001

posted @ 2019-02-18 16:34  我是属车的  阅读(705)  评论(0编辑  收藏  举报