public class Solution { public int ClimbStairs(int n) { //递归方法,效率低 //if (n <= 0) //{ // return 0; //} //else if (n == 1) //{ // return 1; //} //else if (n == 2) //{ // return 2; //} //else //{ // return ClimbStairs(n - 1) + ClimbStairs(n - 2); //} //非递归方法 if (n <= 0) { return 0; } else if (n == 1) { return 1; } else if (n == 2) { return 2; } else { int[] ary = new int[n]; ary[0] = 1; ary[1] = 2; for (int i = 2; i < n; i++) { ary[i] = ary[i - 1] + ary[i - 2]; } return ary[n - 1]; } } }
https://leetcode.com/problems/climbing-stairs/#/description
C++版本:
class Solution { public: int climbStairs(int n) { vector<int> step; step.push_back(1);//只有一级台阶,1种走法 step.push_back(2);//有两级台阶,2种走法 for (int i = 2; i <= n; i++) { //之后每一级台阶,有i-1台阶的走法+i-2台阶的走法之和 step.push_back(step[i - 1] + step[i - 2]); } return step[n - 1]; //4 1+1+1+1, // 1+1+2,1+2+1,2+1+1, // 2+2 //5 1+1+1+1+1 // 1+1+1+2,1+1+2+1,1+2+1+1,2+1+1+1 // 1+2+2,2+1+2,2+2+1, } };
补充一个python的实现:
1 class Solution: 2 def climbStairs(self, n: 'int') -> 'int': 3 if n <= 2: 4 return n 5 else: 6 dp = [0] * (n + 1) 7 dp[1] = 1 8 dp[2] = 2 9 for i in range(3,n+1): 10 dp[i] = dp[i-1] + dp[i-2] 11 return dp[n]
动态规划的基本题型,斐波那契数列计算。
Java版本:
1 class Solution { 2 public int climbStairs(int n) { 3 if(n == 0){ 4 return 0; 5 }else if(n == 1){ 6 return 1; 7 }else if(n == 2){ 8 return 2; 9 } 10 int[] dp = new int[n+1]; 11 dp[0] = 0; 12 dp[1] = 1; 13 dp[2] = 2; 14 for(int i=3;i<n+1;i++) { 15 dp[i] = dp[i-1] + dp[i-2]; 16 } 17 return dp[n]; 18 } 19 }