1 import keras
  2 from keras.datasets import boston_housing
  3 import numpy as np
  4 from keras import models
  5 from keras import layers
  6 import matplotlib.pyplot as plt
  7 from keras import backend as K
  8 # Some memory clean-up
  9 K.clear_session()
 10 
 11 #1. 获取数据集
 12 (train_data, train_targets), (test_data, test_targets) =  boston_housing.load_data()
 13 
 14 #2. 数据处理
 15 #2.1 数据归一化处理
 16 mean = train_data.mean(axis=0)#按列计算均值
 17 train_data -= mean#矩阵逐元素减法
 18 std = train_data.std(axis=0)#按列计算标准差
 19 train_data /= std#矩阵逐元素除法
 20 
 21 test_data -= mean
 22 test_data /= std
 23 
 24 def build_model():
 25     model = models.Sequential()
 26     model.add(layers.Dense(64,activation='relu',input_shape=(train_data.shape[1],)))
 27     model.add(layers.Dense(1))
 28     model.compile(optimizer='rmsprop',loss='mse',metrics=['mae'])
 29     #损失函数mse:均方误差
 30     #监控指标mae:平均绝对误差
 31     return model
 32 
 33 # #5. K折交叉验证确定超参数
 34 # #5.1开始 K折交叉验证的代码
 35 # k = 4 #4折,将训练集分4份,其中3份做训练,1份做验证
 36 # num_val_samples = len(train_data) // k #每一份的样本个数
 37 # num_epochs = 100 #迭代轮数
 38 # # all_scores = [] #保存每次的验证分数
 39 # all_mae_histories = []
 40 # for i in range(k):
 41 #     print('processing fold #', i)
 42 #     # 准备验证集
 43 #     val_data = train_data[i * num_val_samples: (i + 1) * num_val_samples]
 44 #     val_targets = train_targets[i * num_val_samples: (i + 1) * num_val_samples]
 45 
 46 #     # 准备训练集
 47 #     partial_train_data = np.concatenate(
 48 #         [train_data[:i * num_val_samples],
 49 #          train_data[(i + 1) * num_val_samples:]],
 50 #         axis=0)
 51 #     partial_train_targets = np.concatenate(
 52 #         [train_targets[:i * num_val_samples],
 53 #          train_targets[(i + 1) * num_val_samples:]],
 54 #         axis=0)
 55 
 56 #     # 建立网络
 57 #     model = build_model()
 58 #     # 训练模型 (in silent mode, verbose=0)
 59 #     # model.fit(partial_train_data, partial_train_targets,
 60 #     #           epochs=num_epochs, batch_size=1, verbose=0)
 61 #     # # 评估模型
 62 #     # val_mse, val_mae = model.evaluate(val_data, val_targets, verbose=0)
 63 #     # all_scores.append(val_mae)
 64 #     history = model.fit(partial_train_data, partial_train_targets,
 65 #                         validation_data=(val_data, val_targets),
 66 #                         epochs=num_epochs, batch_size=1, verbose=0)
 67 #     #print(history.history)
 68 #     #{'loss': [413.8923645019531], 'mae': [18.39319610595703], 'val_loss': [219.52098083496094], 'val_mae': [12.841739654541016]}
 69 #     mae_history = history.history['val_mae']
 70 #     all_mae_histories.append(mae_history)
 71 
 72 # # print(all_scores)
 73 # #[1.8973649740219116, 2.338238000869751, 2.5596060752868652, 2.437340497970581]
 74 # #5.1结束 K折交叉验证的代码
 75 
 76 
 77 # #5.2开始 根据图形确定迭代轮数等超参数
 78 # average_mae_history = [
 79 #     np.mean([x[i] for x in all_mae_histories]) for i in range(num_epochs)]
 80 
 81 
 82 #5.2.1 直接绘图
 83 # plt.plot(range(1, len(average_mae_history) + 1), average_mae_history)
 84 # plt.xlabel('Epochs')
 85 # plt.ylabel('Validation MAE')
 86 # plt.show()
 87 
 88 
 89 # #5.2.2 使曲线平滑
 90 # def smooth_curve(points, factor=0.9):
 91 #   smoothed_points = []
 92 #   for point in points:
 93 #     if smoothed_points:
 94 #       previous = smoothed_points[-1]
 95 #       smoothed_points.append(previous * factor + point * (1 - factor))
 96 #     else:
 97 #       smoothed_points.append(point)
 98 #   return smoothed_points
 99 
100 # smooth_mae_history = smooth_curve(average_mae_history[10:])
101 # plt.plot(range(1, len(smooth_mae_history) + 1), smooth_mae_history)
102 # plt.xlabel('Epochs')
103 # plt.ylabel('Validation MAE')
104 # plt.show()
105 #5.2结束
106 
107 
108 #6. 调整好超参数,使用全部训练集来训练模型
109 model = build_model()
110 # Train it on the entirety of the data.
111 model.fit(train_data, train_targets,
112           epochs=80, batch_size=16, verbose=0)
113 
114 #在测试集上评估模型
115 test_mse_score, test_mae_score = model.evaluate(test_data, test_targets)
116 
117 print(test_mae_score) # 2.891572952270508

 

小结:

(1)回归问题使用的损失函数与分类问题不同。回归常用的损失函数是均方误差(MSE)。

(2)同样,回归问题使用的评估指标也与分类问题不同。显而易见,精度的概念不适用于回归问题。常见的回归指标是平均绝对误差(MAE)。

(3)如果输入数据的特征具有不同的取值范围,应该先进行预处理,对每个特征单独进行缩放。

(4)如果可用的数据很少,使用 K 折验证可以可靠地评估模型。

(5)如果可用的训练数据很少,最好使用隐藏层较少(通常只有一到两个)的小型网络,以避免严重的过拟合。

posted on 2021-01-23 10:10  Sempron2800+  阅读(263)  评论(0编辑  收藏  举报