前言:聚类是非监督学习的主要任务之一,根据原理可分为:基于质心、基于密度、基于连通性、基于概率以及基于神经网络等多种类型。

本文汇总了常用聚类算法及其评价指标,方便快速查询使用。(本文使用波士顿房价数据集,可用于回归)

以下为试验结果:

 1 from time import time
 2 
 3 import numpy as np
 4 import pandas as pd
 5 import matplotlib as mpl
 6 import matplotlib.pyplot as plt
 7 import sklearn
 8 from sklearn import datasets
 9 
10 from sklearn.decomposition import PCA
11 from sklearn.preprocessing import scale
12 
13 from sklearn import metrics
14 from sklearn.cluster import KMeans
15 from sklearn.cluster import MeanShift
16 from sklearn.cluster import DBSCAN
17 from sklearn.cluster import AgglomerativeClustering
18 
19 #1. 加载数据
20 boston = sklearn.datasets.load_boston()
21 x,y = boston.data, boston.target
22 y = y.reshape(len(y),1)
23 data = np.hstack([x,y])
24 
25 #2. 特征归一化
26 x = scale(x)
27 data = scale(data)
28 
29 
30 #3. 分析数据
31 name_data = boston.feature_names
32 #print(name_data)
33 
34 df_x = pd.DataFrame(x,columns=name_data)
35 df_y = pd.DataFrame(y,columns=['MEDV'],dtype=np.int32)
36 df = pd.concat([df_x,df_y],axis=1)
37 
38 # #506条数据,没有空值,float64类型
39 # print(df.head())
40 # print(df.info())
41 # print(df['MEDV'].describe())
42 
43 #拟分为4类,目标为:<=17.025,>17.025 and <= 21.2, >21.2 and <=25, >25
44 n_clusters = 4#聚簇数量
45 df_y.loc[df_y['MEDV'] < 20] = 0
46 df_y.loc[(df_y['MEDV'] > 17.025) & (df_y['MEDV'] <= 21.2)] = 1
47 df_y.loc[(df_y['MEDV'] > 21.2) & (df_y['MEDV'] <= 25)] = 2
48 df_y.loc[df_y['MEDV'] > 25] = 3
49 labels = df_y.values.ravel()
50 
51 def bench_k_means(estimator, name, data, method):
52     t0 = time()
53     estimator.fit(data)
54 
55     print('%-9s\t%-9s\t%.2fs\t\t%.3f\t\t\t%.3f\t\t%.3f\t\t%.3f\t\t\t%.3f\t\t\t%.3f'
56           % (method, name, (time() - t0), 
57              metrics.homogeneity_score(labels, estimator.labels_),
58              metrics.completeness_score(labels, estimator.labels_),
59              metrics.v_measure_score(labels, estimator.labels_),
60              metrics.adjusted_rand_score(labels, estimator.labels_),
61              metrics.adjusted_mutual_info_score(labels,  estimator.labels_,
62                                                 average_method='arithmetic'),
63              metrics.silhouette_score(data, estimator.labels_,
64                                       metric='euclidean',
65                                       sample_size=300)))
66 
67 print(115 * '_')
68 print('聚类方式\t\t聚类原理\t\t执行时间\t\t同质性得分\t\t完整性评分\tv-测量得分\t调整后兰德指数\t调整的相互信息\t轮廓系数')
69 
70 # #5.1 KMeans
71 bench_k_means(KMeans(init='k-means++', n_clusters=n_clusters, n_init=10),
72               name="质心", data=data, method='KMeans')
73 
74 #5.2 KMeasn
75 bench_k_means(KMeans(init='random', n_clusters=n_clusters, n_init=10),
76               name="质心", data=data, method='KMeans')
77 
78 #5.3 KMeasn
79 pca = PCA(n_components=n_clusters).fit(data)
80 bench_k_means(KMeans(init=pca.components_, n_clusters=n_clusters, n_init=1),
81               name="质心",
82               data=data, method='KMeans')
83 
84 #5.4 MeanShift
85 bench_k_means(MeanShift(),
86               name="密度",
87               data=data, method='MeanShift')
88 
89 #5.5 DBSCAN
90 bench_k_means(DBSCAN(eps=3, min_samples=2),
91               name="密度",
92               data=data, method='DBSCAN')
93 
94 #5.6 HCA
95 bench_k_means(AgglomerativeClustering(n_clusters=n_clusters),
96               name="连通性",
97               data=data, method='HCA')
98 print(115 * '_')

 

posted on 2019-07-19 17:41  Sempron2800+  阅读(364)  评论(0编辑  收藏  举报