HDU-6057 Kanade's convolution
题面
Description
Give you two arrays \(A[0..2^m-1]\) and \(B[0..2^m-1]\).
Please calculate array \(C[0..2^m-1]\):
You just need to print \(\sum_{i=0}^{2^m-1}C[i]*1526^i ~mod~998244353\)
\(m<=19\)
\(0\leq A[i],B[i]< 998244353\)
Input
There is only one test case.
The first line consists of one integer \(m\).
The second line consists of \(2^m\) integers \(A[0..2^m-1]\)
The third line consists of \(2^m\) integers \(B[0..2^m-1]\)
Output
Output only one integer means the answer.
Sample Input
2
1 2 3 4
5 6 7 8
Sample Output
568535691
题意
计算上式
题解
我在做这题的时候没太有思路,去搜了题解,有一篇题解感觉说的很好
https://www.cnblogs.com/Tiw-Air-OAO/p/10274225.html
这种题,推式子显然不是我这种非专业数学选手掌握的,那么怎样提高自己做出这种题目的概率呢?
打表大概是一个很好的办法,这篇题解里也是这样入手的
~ | (1) | (2) | (3) | (4) |
---|---|---|---|---|
i | 0 | 0 | 1 | 1 |
j | 0 | 1 | 0 | 1 |
i xor j | 0 | 1 | 1 | 0 |
i or j | 0 | 1 | 1 | 1 |
i and j | 0 | 0 | 0 | 1 |
我们令\(a = i~xor~ j,b=i~or~j, c=i~and~j\)
我们可以发现,显然,当异或值某一位为1的时候,或该位上必定为1,此时,i和j是该位上是可以有两种情况的,01或者10,而异或值为0,或值为1,和异或值为1,或值为0,i和j都是唯一确定的,也就是说我们可以根据异或值按位1的数量来判断i和j能够产生a和b的(i,j)数目,也就是\(2^{bit(a)}\),其中bit(a)表示a中1的数量
这样,我们一开始的时候,就把a(x)乘上\(2^{bit(a)}\),这样我们就可以不考虑原来的i和j而直接考虑a,b了
仔细观察,\(a \oplus b = c\)
但是这个是有条件的,上面也说了,异或某一位是1,或该位上必定是1,也就是说,\(a~and~b=a\),这个条件我们不好控制,但我们可以用之前的bit数组来控制,\(a~and~b=a \Leftrightarrow bit(b)-bit(a) = bit(c)\)
我们可以把a数组中bit(i)=k的数放在\(A[bit[i]][i]\),b同理,然后做fwt得到c[i-j],然后只保留c中\(C[bit[i]][i]\)的数即可。
代码
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const ll mod = 998244353;
const ll inv2 = (mod + 1) >> 1;
void fwt_xor(ll a[], int len, int op) {
for (int h = 2; h <= len; h <<= 1) {
for (int j = 0; j < len; j += h) {
for (int k = j; k < j + h / 2; k++) {
ll u = a[k], t = a[k + h / 2];
a[k] = (u + t) % mod;
a[k + h / 2] = (u - t + mod) % mod;
if (op == -1) {
a[k] = a[k] * inv2 % mod;
a[k + h / 2] = a[k + h / 2] * inv2 % mod;
}
}
}
}
}
const ll N = 1 << 20;
ll a[N], b[N];
int bit[N];
ll A[21][N], B[21][N];
ll C[21][N];
int main() {
int m;
scanf("%d", &m);
int n = (1 << m);
for (int i = 0; i < n; i++) {
scanf("%lld", &a[i]);
}
for (int i = 0; i < n; i++) {
scanf("%lld", &b[i]);
}
for (int i = 0; i < n; i++) {
bit[i] = 0;
int x = i;
while (x) {
if (x & 1) bit[i]++;
x >>= 1;
}
}
for (int i = 0; i < n; i++) {
A[bit[i]][i] = a[i] * (1ll << bit[i]) % mod;
B[bit[i]][i] = b[i];
}
for (int i = 0; i <= m; i++) {
fwt_xor(A[i], n, 1);
fwt_xor(B[i], n, 1);
}
for (int i = 0; i <= m; i++) {
for (int j = 0; j <= i; j++) {
for (int k = 0; k < n; k++) {
C[i - j][k] = (C[i - j][k] + A[j][k] * B[i][k] % mod) % mod;
}
}
}
for (int i = 0; i <= m; i++) {
fwt_xor(C[i], n, -1);
}
ll now = 1;
ll ans = 0;
for (int i = 0; i < n; i++) {
ans = (ans + C[bit[i]][i] * now % mod) % mod;
now = now * 1526 % mod;
}
printf("%lld\n", ans);
return 0;
}