CSU-1989 赶路的小X

题目链接

http://acm.csu.edu.cn:20080/csuoj/problemset/problem?pid=1989

题目

Description

A国一共有N座城市,由M条双向公路连接。小X现在位于S市,他正在赶往T市。小X的时间有限,他还剩下L的时间。另外,到达每座城市,小X都需要缴纳一定的过路费,包括S市和T市。在缴纳过路费时,单次的花费越多,小X越不开心。他希望能够在规定时间内到达T市的同时,使缴纳过路费最多的那次最少。

Input

输入包含不超过10组数据。
对于每组数据,第一行5个正整数,N,M,S,T,L(N≤10000;M≤50000;S≤N;T≤N;L≤1000000000),意义如上文所述。接下来的1行有N个正整数,第i个数表示经过城市i需要缴纳的过路费Fi(Fi≤1000000000)。接下来M行,每行3个正整数Ui,Vi,Wi,(Ui≤N;Vi≤N;Wi≤1000000000)描述一条公路,表示从城市Ui到城市Vi需要花费Wi的时间。

Output

对于每组数据,输出一行一个正整数,表示小X交费最多的那次的最小值。如果小X无论如何也无法在规定时间内到达城市T,输出-1。

Sample Input

4 4 1 4 10
3 6 9 3
1 3 1
2 1 3
3 4 5
4 2 7
4 4 1 4 4
3 6 9 3
1 3 1
2 1 3
3 4 5
4 2 7
5 5 1 4 6
3 6 9 3 6
1 3 1
2 1 3
3 4 5
4 5 1
5 2 2

Sample Output

6
-1
6

题解

过路费最多的那次最少,很容易想到二分答案,然后检查,检查就跑一边dijkstra,在跑的时候加入条件边权必须小于mid,最后判断一下d[t]是否大于L,大于的话就l = mid + 1,否则r = mid - 1,记录一下ans即可

AC代码

#include<bits/stdc++.h>
#define ll long long
#define maxn 100050
#define pi pair<int, int>
using namespace std;
inline ll getnum() {
	ll ans = 0; char c; ll flag = 1;
	while (!isdigit(c = getchar()) && c != '-');
	if (c == '-') flag = -1; else ans = c - '0';
	while (isdigit(c = getchar())) ans = ans * 10 + c - '0';
	return ans * flag;
}
struct node {
	ll v, w;
	node(ll vv, ll ww) {
		v = vv;
		w = ww;
	}
};
vector<node> G[maxn];
void adde(ll a, ll b, ll w) {
	G[a].push_back(node(b, w));
	G[b].push_back(node(a, w));
}
ll n, m, s, t, l;
ll w[maxn];
ll dp[maxn];
ll maxw;
ll d[maxn], vis[maxn];
int dijkstra(int mid, int s) {
	priority_queue<pi, vector<pi>, greater<pi> > q;
	fill(d + 1, d + n + 1, 0x7fffffffffffffff);
	d[s] = 0;
	fill(vis + 1, vis + n + 1, false);
	q.push(make_pair(d[s], s));
	while (!q.empty()) {
		pi now = q.top(); q.pop();
		int x = now.second;
		if (vis[x]) continue;
		vis[x] = true;
		if (w[x] > mid) continue;
		for (int i = 0; i < G[x].size(); i++) {
			int v = G[x][i].v, wi = G[x][i].w;
			if (d[v] > d[x] + wi && w[v] <= mid && d[x] + wi <= l) {
				d[v] = d[x] + wi;
				q.push(make_pair(d[v], v));
			}
		}
	}
	if (d[t] > l) return 0;
	else return 1;
}
int main() {
	while (scanf("%lld%lld%lld%lld%lld", &n, &m, &s, &t, &l) != EOF) {
		maxw = 0;
		for (int i = 1; i <= n; i++) {
			w[i] = getnum();
			maxw = max(maxw, w[i]);
		}
		for (int i = 1; i <= n; i++) {
			G[i].clear();
		}
		for (int i = 1; i <= m; i++) {
			ll a, b; ll wi;
			a = getnum(), b = getnum(), wi = getnum();
			adde(a, b, wi);
		}
		ll li = 0, r = maxw + 100, mid = -1;
		ll ans = 0x7fffffffffffffff;
		while (li <= r) {
			mid = (li + r) >> 1;
			if (dijkstra(mid, s)) {
				r = mid - 1;
				ans = min(ans, mid);
			}
			else li = mid + 1;
		}
		if (li > maxw) cout << "-1" << endl;
		else cout << ans << endl;
	}
	return 0;
}
/**********************************************************************
	Problem: 1989
	User: Artoriax
	Language: C++
	Result: AC
	Time:328 ms
	Memory:10664 kb
**********************************************************************/

posted @ 2019-02-13 22:56  Artoriax  阅读(170)  评论(0编辑  收藏  举报