Linux内存管理 (7)VMA操作
专题:Linux内存管理专题
关键词:VMA、vm_area_struct、查找/插入/合并VMA、红黑树。
用户进程可以拥有3GB大小的空间,远大于物理内存,那么这些用户进程的虚拟地址空间是如何管理的呢?
malloc()或mmap()操作都会要求在虚拟地址空间中分配内存块,但这些内存在物理上往往都是离散的。
这些进程地址空间在内核中使用struct vm_area_struct数据结构来描述,简称VMA,也被称为进程地址空间或进程线性区。
1. 数据结构
struct vm_area_struct可以说是VMA的描述符,在创建之后会插入到mm->mm_rb红黑树和mm->mmap链表中。
/* * This struct defines a memory VMM memory area. There is one of these * per VM-area/task. A VM area is any part of the process virtual memory * space that has a special rule for the page-fault handlers (ie a shared * library, the executable area etc). */ struct vm_area_struct { /* The first cache line has the info for VMA tree walking. */ unsigned long vm_start; /* Our start address within vm_mm. */--------VMA在进程地址空间的起始结束地址 unsigned long vm_end; /* The first byte after our end address within vm_mm. */ /* linked list of VM areas per task, sorted by address */ struct vm_area_struct *vm_next, *vm_prev;----------------------------------VMA链表的前后成员 struct rb_node vm_rb;------------------------------------------------------VMA作为一个节点加入到红黑树中,每个进程的mm_struct中都有一个红黑树mm->mm_rb。 /* * Largest free memory gap in bytes to the left of this VMA. * Either between this VMA and vma->vm_prev, or between one of the * VMAs below us in the VMA rbtree and its ->vm_prev. This helps * get_unmapped_area find a free area of the right size. */ unsigned long rb_subtree_gap; /* Second cache line starts here. */ struct mm_struct *vm_mm; /* The address space we belong to. */--------指向VMA所属进程的struct mm_struct结构。 pgprot_t vm_page_prot; /* Access permissions of this VMA. */------VMA访问权限 unsigned long vm_flags; /* Flags, see mm.h. */--------------------VMA标志位 /* * For areas with an address space and backing store, * linkage into the address_space->i_mmap interval tree. */ struct { struct rb_node rb; unsigned long rb_subtree_last; } shared; /* * A file's MAP_PRIVATE vma can be in both i_mmap tree and anon_vma * list, after a COW of one of the file pages. A MAP_SHARED vma * can only be in the i_mmap tree. An anonymous MAP_PRIVATE, stack * or brk vma (with NULL file) can only be in an anon_vma list. */ struct list_head anon_vma_chain; /* Serialized by mmap_sem &-----------用于管理RMAP反向映射。 * page_table_lock */ struct anon_vma *anon_vma; /* Serialized by page_table_lock */------用于管理RMAP反向映射。 /* Function pointers to deal with this struct. */ const struct vm_operations_struct *vm_ops;-----------------------------VMA操作函数合集,常用于文件映射。 /* Information about our backing store: */ unsigned long vm_pgoff; /* Offset (within vm_file) in PAGE_SIZE-指定文件映射的偏移量,单位是页面。 units, *not* PAGE_CACHE_SIZE */ struct file * vm_file; /* File we map to (can be NULL). */------描述一个被映射的文件。 void * vm_private_data; /* was vm_pte (shared mem) */ #ifndef CONFIG_MMU struct vm_region *vm_region; /* NOMMU mapping region */ #endif #ifdef CONFIG_NUMA struct mempolicy *vm_policy; /* NUMA policy for the VMA */ #endif }
struct mm_struct是描述进程内存管理的核心数据结构,VMA属于进程内存区域。在mm_struct中通过mmap链表和mm_rb对vm_area_struct进行管理。
struct mm_struct { struct vm_area_struct *mmap; /* list of VMAs */-----单链表,按起始地址递增的方式插入,所有的VMA都连接到此链表中。链表头是mm_struct->mmap。 struct rb_root mm_rb;--------------------------------------所有的VMA按照地址插入mm_struct->mm_rb红黑树中,mm_struct->mm_rb是根节点,每个进程都有一个红黑树。 ... }
2. 查找VMA
/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr) { struct rb_node *rb_node; struct vm_area_struct *vma; /* Check the cache first. */ vma = vmacache_find(mm, addr); if (likely(vma)) return vma; rb_node = mm->mm_rb.rb_node; vma = NULL; while (rb_node) { struct vm_area_struct *tmp; tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb); if (tmp->vm_end > addr) { vma = tmp; if (tmp->vm_start <= addr) break; rb_node = rb_node->rb_left; } else rb_node = rb_node->rb_right; } if (vma) vmacache_update(addr, vma); return vma; } struct vm_area_struct *vmacache_find(struct mm_struct *mm, unsigned long addr) { int i; if (!vmacache_valid(mm)) return NULL; count_vm_vmacache_event(VMACACHE_FIND_CALLS); for (i = 0; i < VMACACHE_SIZE; i++) { struct vm_area_struct *vma = current->vmacache[i]; if (!vma) continue; if (WARN_ON_ONCE(vma->vm_mm != mm)) break; if (vma->vm_start <= addr && vma->vm_end > addr) { count_vm_vmacache_event(VMACACHE_FIND_HITS); return vma; } } return NULL; } void vmacache_update(unsigned long addr, struct vm_area_struct *newvma) { if (vmacache_valid_mm(newvma->vm_mm)) current->vmacache[VMACACHE_HASH(addr)] = newvma; }
3. 插入VMA
int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma) { struct vm_area_struct *prev; struct rb_node **rb_link, *rb_parent; /* * The vm_pgoff of a purely anonymous vma should be irrelevant * until its first write fault, when page's anon_vma and index * are set. But now set the vm_pgoff it will almost certainly * end up with (unless mremap moves it elsewhere before that * first wfault), so /proc/pid/maps tells a consistent story. * * By setting it to reflect the virtual start address of the * vma, merges and splits can happen in a seamless way, just * using the existing file pgoff checks and manipulations. * Similarly in do_mmap_pgoff and in do_brk. */ if (!vma->vm_file) { BUG_ON(vma->anon_vma); vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT; } if (find_vma_links(mm, vma->vm_start, vma->vm_end, &prev, &rb_link, &rb_parent)) return -ENOMEM; if ((vma->vm_flags & VM_ACCOUNT) && security_vm_enough_memory_mm(mm, vma_pages(vma))) return -ENOMEM; vma_link(mm, vma, prev, rb_link, rb_parent); return 0; }
static int find_vma_links(struct mm_struct *mm, unsigned long addr, unsigned long end, struct vm_area_struct **pprev, struct rb_node ***rb_link, struct rb_node **rb_parent) { struct rb_node **__rb_link, *__rb_parent, *rb_prev; __rb_link = &mm->mm_rb.rb_node; rb_prev = __rb_parent = NULL; while (*__rb_link) { struct vm_area_struct *vma_tmp; __rb_parent = *__rb_link; vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb); if (vma_tmp->vm_end > addr) { /* Fail if an existing vma overlaps the area */ if (vma_tmp->vm_start < end) return -ENOMEM; __rb_link = &__rb_parent->rb_left; } else { rb_prev = __rb_parent; __rb_link = &__rb_parent->rb_right; } } *pprev = NULL; if (rb_prev) *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb); *rb_link = __rb_link; *rb_parent = __rb_parent; return 0; }
static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma, struct vm_area_struct *prev, struct rb_node **rb_link, struct rb_node *rb_parent) { struct address_space *mapping = NULL; if (vma->vm_file) { mapping = vma->vm_file->f_mapping; i_mmap_lock_write(mapping); } __vma_link(mm, vma, prev, rb_link, rb_parent); __vma_link_file(vma); if (mapping) i_mmap_unlock_write(mapping); mm->map_count++; validate_mm(mm); }
4. 合并VMA
/* * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out * whether that can be merged with its predecessor or its successor. * Or both (it neatly fills a hole). * * In most cases - when called for mmap, brk or mremap - [addr,end) is * certain not to be mapped by the time vma_merge is called; but when * called for mprotect, it is certain to be already mapped (either at * an offset within prev, or at the start of next), and the flags of * this area are about to be changed to vm_flags - and the no-change * case has already been eliminated. * * The following mprotect cases have to be considered, where AAAA is * the area passed down from mprotect_fixup, never extending beyond one * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after: * * AAAA AAAA AAAA AAAA * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX * cannot merge might become might become might become * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or * mremap move: PPPPNNNNNNNN 8 * AAAA * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN * might become case 1 below case 2 below case 3 below * * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX: * mprotect_fixup updates vm_flags & vm_page_prot on successful return. */ struct vm_area_struct *vma_merge(struct mm_struct *mm, struct vm_area_struct *prev, unsigned long addr, unsigned long end, unsigned long vm_flags, struct anon_vma *anon_vma, struct file *file, pgoff_t pgoff, struct mempolicy *policy) { pgoff_t pglen = (end - addr) >> PAGE_SHIFT; struct vm_area_struct *area, *next; int err; /* * We later require that vma->vm_flags == vm_flags, * so this tests vma->vm_flags & VM_SPECIAL, too. */ if (vm_flags & VM_SPECIAL) return NULL; if (prev) next = prev->vm_next; else next = mm->mmap; area = next; if (next && next->vm_end == end) /* cases 6, 7, 8 */ next = next->vm_next; /* * Can it merge with the predecessor? */ if (prev && prev->vm_end == addr && mpol_equal(vma_policy(prev), policy) && can_vma_merge_after(prev, vm_flags, anon_vma, file, pgoff)) { /* * OK, it can. Can we now merge in the successor as well? */ if (next && end == next->vm_start && mpol_equal(policy, vma_policy(next)) && can_vma_merge_before(next, vm_flags, anon_vma, file, pgoff+pglen) && is_mergeable_anon_vma(prev->anon_vma, next->anon_vma, NULL)) { /* cases 1, 6 */ err = vma_adjust(prev, prev->vm_start, next->vm_end, prev->vm_pgoff, NULL); } else /* cases 2, 5, 7 */ err = vma_adjust(prev, prev->vm_start, end, prev->vm_pgoff, NULL); if (err) return NULL; khugepaged_enter_vma_merge(prev, vm_flags); return prev; } /* * Can this new request be merged in front of next? */ if (next && end == next->vm_start && mpol_equal(policy, vma_policy(next)) && can_vma_merge_before(next, vm_flags, anon_vma, file, pgoff+pglen)) { if (prev && addr < prev->vm_end) /* case 4 */ err = vma_adjust(prev, prev->vm_start, addr, prev->vm_pgoff, NULL); else /* cases 3, 8 */ err = vma_adjust(area, addr, next->vm_end, next->vm_pgoff - pglen, NULL); if (err) return NULL; khugepaged_enter_vma_merge(area, vm_flags); return area; } return NULL; }
5. 红黑树例子
联系方式:arnoldlu@qq.com