LXR | KVM | PM | Time | Interrupt | Systems Performance | Bootup Optimization

Linux uevent分析、用户接收uevent以及mdev分析

关键词:uevent、netlink、ADD/REMOVE/CHANGE、uevent_helper、hotplug、usermode helper、mdev、mdev.conf等等。

 本文从三方面了解uevent相关内容:内核中uevent如何传送、用户空间如何处理uevent、如何通过mdev实现热插拔功能。

1. Linux uevent分析

kobject_action定义了 Linux下的uevent类型;struct kerenl_uevent_env表示一个待发送的uevent。

uevent_net_init()创建发送uevent所需要的socket等信息。

内核驱动通过kobject_uevent()/kobject_uevent_env()发送uevent到用户空间,主要包括两部分工作:一是通过netlink_broadcast_filtered()发送netlink消息;另一是通过call_usermodehelper_setup()/call_usermodehelper_exec()调用用户空间程序处理uevent消息。

1.1 uevent数据结构

kobject_action定义了kobject的动作,包括ADD、REMOVE、CHANGE等等。用户空间根据ADD或者REMOVE处理热插拔时间,电池模块根据CHANGE处理电量更新。

kobj_uevent_env用于表示一个kobject事件,argv是用户空间执行的helper参数;envp和buf组成发送uevent字符串信息。

enum kobject_action {
    KOBJ_ADD,------------------------ADD/REMOVE添加/移除事件。
    KOBJ_REMOVE,
    KOBJ_CHANGE,---------------------设备状态或者内容发生改变。
    KOBJ_MOVE,-----------------------更改名称或者更改parent,即更改了目录结构。
    KOBJ_ONLINE,---------------------设备上线/下线事件,常表示使能或者去使能。
    KOBJ_OFFLINE,
    KOBJ_MAX
};

static const char *kobject_actions[] = {
    [KOBJ_ADD] =        "add",
    [KOBJ_REMOVE] =        "remove",
    [KOBJ_CHANGE] =        "change",
    [KOBJ_MOVE] =        "move",
    [KOBJ_ONLINE] =        "online",
    [KOBJ_OFFLINE] =    "offline",
};

struct kobj_uevent_env {
    char *argv[3];------------------------------用户空间可执行文件路径,以及参数等。
    char *envp[UEVENT_NUM_ENVP];----------------指针数组,保存每个环境变量的地址。
    int envp_idx;
    char buf[UEVENT_BUFFER_SIZE];---------------环境变量内容。
    int buflen;
};

1.2 uevent初始化

uevent_net_init()创建类型为NETLINK_KOBJECT_UEVENT的socket,并将其放入uevent_sock_list链表上。uevent_net_exit()则将其从uevent_socket_list中摘除,并且释放socket相关资源。

static int uevent_net_init(struct net *net)
{
    struct uevent_sock *ue_sk;
    struct netlink_kernel_cfg cfg = {
        .groups    = 1,
        .flags    = NL_CFG_F_NONROOT_RECV,
    };

    ue_sk = kzalloc(sizeof(*ue_sk), GFP_KERNEL);
    if (!ue_sk)
        return -ENOMEM;

    ue_sk->sk = netlink_kernel_create(net, NETLINK_KOBJECT_UEVENT, &cfg);------------创建NETLINK_KOBJECT_UEVENT类型的socket。
    if (!ue_sk->sk) {
        printk(KERN_ERR
               "kobject_uevent: unable to create netlink socket!\n");
        kfree(ue_sk);
        return -ENODEV;
    }
    mutex_lock(&uevent_sock_mutex);
    list_add_tail(&ue_sk->list, &uevent_sock_list);-----------------------------------将创建的uevent_sock加入到uevent_sock_list中。
    mutex_unlock(&uevent_sock_mutex);
    return 0;
}

static void uevent_net_exit(struct net *net)
{
    struct uevent_sock *ue_sk;

    mutex_lock(&uevent_sock_mutex);
    list_for_each_entry(ue_sk, &uevent_sock_list, list) {
        if (sock_net(ue_sk->sk) == net)
            goto found;
    }
    mutex_unlock(&uevent_sock_mutex);
    return;

found:
    list_del(&ue_sk->list);
    mutex_unlock(&uevent_sock_mutex);

    netlink_kernel_release(ue_sk->sk);
    kfree(ue_sk);
}

static struct pernet_operations uevent_net_ops = {
    .init    = uevent_net_init,
    .exit    = uevent_net_exit,
};

static int __init kobject_uevent_init(void)
{
    return register_pernet_subsys(&uevent_net_ops);-----------将uevent网络协议模块添加到新的命名空间子系统中,并且调用init初始化函数。
}

postcore_initcall(kobject_uevent_init);

1.3 对uevent_helper设置

对uevent_helper设置,可以对/proc/sys/kernel/hotplug写可执行文件路径即可。

需要先如下配置打开CONFIG_UEVENT_HELPER:

Device Drivers
    ->Generic Driver Options
        ->Support for uevent helper

 

然后在内核触发uevent事件的之后调用相关可执行文件进行处理。

static struct ctl_table kern_table[] = {
...
#ifdef CONFIG_UEVENT_HELPER
    {
        .procname    = "hotplug",
        .data        = &uevent_helper,
        .maxlen        = UEVENT_HELPER_PATH_LEN,
        .mode        = 0644,
        .proc_handler    = proc_dostring,
    },
#endif...
    { }
};

或者还可以对/proc/kernel/uevent_helper写入可执行文件路径。

static ssize_t uevent_helper_show(struct kobject *kobj,
                  struct kobj_attribute *attr, char *buf)
{
    return sprintf(buf, "%s\n", uevent_helper);
}
static ssize_t uevent_helper_store(struct kobject *kobj,
                   struct kobj_attribute *attr,
                   const char *buf, size_t count)
{
    if (count+1 > UEVENT_HELPER_PATH_LEN)
        return -ENOENT;
    memcpy(uevent_helper, buf, count);
    uevent_helper[count] = '\0';
    if (count && uevent_helper[count-1] == '\n')
        uevent_helper[count-1] = '\0';
    return count;
}
KERNEL_ATTR_RW(uevent_helper);

1.4 usermode helper

usermode helper用于帮助在内核空间启动一个用户空间程序。首先通过call_usermodehelper_setup()初始化一个struct subprocess_info实例;然后调用call_usermodehelper_exec()执行,通过kernel_thread()创建线程,入口函数call_usermodehelper_exec_async()调用do_execve()加载用户空间程序。

这里不同等待程序运行结束的方式,UMH_NO_WAIT在将work放入system_unbound_wq之后,不等待直接退出;UMH_KILLABLE则会等待进程变为TASK_KILLABLE。UMH_WAIT_PROC等待进程执行完毕,UMH_WAIT_EXEC只是等待do_exec()执行完毕,而不是进程结束。

struct subprocess_info表示一个usermode helper执行的实例。

#define UMH_NO_WAIT    0    /* don't wait at all */
#define UMH_WAIT_EXEC    1    /* wait for the exec, but not the process */
#define UMH_WAIT_PROC    2    /* wait for the process to complete */
#define UMH_KILLABLE    4    /* wait for EXEC/PROC killable */

struct subprocess_info {
    struct work_struct work;---------------将usermode helper作为一个work放入system_unbound_wq中。
    struct completion *complete;
    char *path;----------------------------用户空间可执行文件路径。
    char **argv;---------------------------可执行文件所需参数。
    char **envp;---------------------------可执行文件所需环境变量。
    int wait;------------------------------等待标志。
    int retval;
    int (*init)(struct subprocess_info *info, struct cred *new);---执行产需之前的初始化函数。
    void (*cleanup)(struct subprocess_info *info);-----------------释放struct subprocess_info是的清理程序。
    void *data;
};

call_usermodehelper()首先创建struct subprocess_info,然后执行用户空间程序。

int call_usermodehelper(char *path, char **argv, char **envp, int wait)
{
    struct subprocess_info *info;
    gfp_t gfp_mask = (wait == UMH_NO_WAIT) ? GFP_ATOMIC : GFP_KERNEL;

    info = call_usermodehelper_setup(path, argv, envp, gfp_mask,
                     NULL, NULL, NULL);-------------------------------需要用户空间执行的程序路径以及参数,内存分配gfp_mask等等,填充倒struc subprocess_info中。
    if (info == NULL)
        return -ENOMEM;

    return call_usermodehelper_exec(info, wait);----------------------将subprocess_info->work放入system_unbound_eq执行。
}

call_usermodehelper_setup()初始化struct subprocess_info实例,包括程序路径、参数等等,还有初始化一个work,对应的执行函数式call_usermodehelper_exec_work()。

struct subprocess_info *call_usermodehelper_setup(char *path, char **argv,
        char **envp, gfp_t gfp_mask,
        int (*init)(struct subprocess_info *info, struct cred *new),
        void (*cleanup)(struct subprocess_info *info),
        void *data)
{
    struct subprocess_info *sub_info;
    sub_info = kzalloc(sizeof(struct subprocess_info), gfp_mask);
    if (!sub_info)
        goto out;

    INIT_WORK(&sub_info->work, call_usermodehelper_exec_work);
    sub_info->path = path;
    sub_info->argv = argv;
    sub_info->envp = envp;

    sub_info->cleanup = cleanup;
    sub_info->init = init;
    sub_info->data = data;
  out:
    return sub_info;
}

static void call_usermodehelper_exec_work(struct work_struct *work)
{
    struct subprocess_info *sub_info =
        container_of(work, struct subprocess_info, work);

    if (sub_info->wait & UMH_WAIT_PROC) {
        call_usermodehelper_exec_sync(sub_info);
    } else {
        pid_t pid;
        /*
         * Use CLONE_PARENT to reparent it to kthreadd; we do not
         * want to pollute current->children, and we need a parent
         * that always ignores SIGCHLD to ensure auto-reaping.
         */
        pid = kernel_thread(call_usermodehelper_exec_async, sub_info,
                    CLONE_PARENT | SIGCHLD);--------------------------CLONE_PARENT让新创建的进程与创建它的进程成了‘兄弟’而不是‘父子’。
        if (pid < 0) {
            sub_info->retval = pid;
            umh_complete(sub_info);
        }
    }
}

call_usermode_herlper_exec_async()和call_usermodehelper_exec_sync()最大的区别是 创建进程的flags,前者CLONE_PARENT导致新创建的进程和创建它的进程编程兄弟关系,而后者还保持父子关系。

static void call_usermodehelper_exec_sync(struct subprocess_info *sub_info)
{
    pid_t pid;

    /* If SIGCLD is ignored sys_wait4 won't populate the status. */
    kernel_sigaction(SIGCHLD, SIG_DFL);
    pid = kernel_thread(call_usermodehelper_exec_async, sub_info, SIGCHLD);
    if (pid < 0) {
        sub_info->retval = pid;
    } else {
        int ret = -ECHILD;

        sys_wait4(pid, (int __user *)&ret, 0, NULL);-------------------------等待子进程退出,这也是async和sync最大的区别所在。
        if (ret)
            sub_info->retval = ret;
    }

    kernel_sigaction(SIGCHLD, SIG_IGN);

    umh_complete(sub_info);
}

static int call_usermodehelper_exec_async(void *data)
{
    struct subprocess_info *sub_info = data;
    struct cred *new;
    int retval;

    spin_lock_irq(&current->sighand->siglock);
    flush_signal_handlers(current, 1);------------------------------------------进行signal、nice、credential准备工作。
    spin_unlock_irq(&current->sighand->siglock);

    set_user_nice(current, 0);

    retval = -ENOMEM;
    new = prepare_kernel_cred(current);
    if (!new)
        goto out;

    spin_lock(&umh_sysctl_lock);
    new->cap_bset = cap_intersect(usermodehelper_bset, new->cap_bset);
    new->cap_inheritable = cap_intersect(usermodehelper_inheritable,
                         new->cap_inheritable);
    spin_unlock(&umh_sysctl_lock);

    if (sub_info->init) {
        retval = sub_info->init(sub_info, new);--------------------------------为进程创建进行初始化工作。
        if (retval) {
            abort_creds(new);
            goto out;
        }
    }

    commit_creds(new);

    retval = do_execve(getname_kernel(sub_info->path),
               (const char __user *const __user *)sub_info->argv,
               (const char __user *const __user *)sub_info->envp);------------调用usermode程序替代当前进程。
...
}

call_usermodehelper_exec()最主要的工作就是将一个usermode helper命令放入system_unbound_wq执行,然后根据wait类型进行不同条件的等待。

int call_usermodehelper_exec(struct subprocess_info *sub_info, int wait)
{
    DECLARE_COMPLETION_ONSTACK(done);
    int retval = 0;

    if (!sub_info->path) {
        call_usermodehelper_freeinfo(sub_info);
        return -EINVAL;
    }
    helper_lock();
    if (usermodehelper_disabled) {
        retval = -EBUSY;
        goto out;
    }

    sub_info->complete = (wait == UMH_NO_WAIT) ? NULL : &done;
    sub_info->wait = wait;

    queue_work(system_unbound_wq, &sub_info->work);---------------将usermode helper进程放入system_unbound_wq上调度,即不绑定到任何CPU上,尽快得到执行。
    if (wait == UMH_NO_WAIT)    /* task has freed sub_info */-----对于UMH_NO_WAIT类型,跳过下面的completion同步等待步骤。
        goto unlock;

    if (wait & UMH_KILLABLE) {
        retval = wait_for_completion_killable(&done);-------------等待进程属性变为TASK_KILLABLE。
        if (!retval)
            goto wait_done;

        /* umh_complete() will see NULL and free sub_info */
        if (xchg(&sub_info->complete, NULL))
            goto unlock;
        /* fallthrough, umh_complete() was already called */
    }

    wait_for_completion(&done);
wait_done:
    retval = sub_info->retval;
out:
    call_usermodehelper_freeinfo(sub_info);
unlock:
    helper_unlock();
    return retval;
}

static void umh_complete(struct subprocess_info *sub_info)
{
    struct completion *comp = xchg(&sub_info->complete, NULL);

    if (comp)
        complete(comp);
    else
        call_usermodehelper_freeinfo(sub_info);
}

static void call_usermodehelper_freeinfo(struct subprocess_info *info)
{
    if (info->cleanup)
        (*info->cleanup)(info);
    kfree(info);
}

1.5 uevent发送

uevent发送可以通过kobject_uevent(),或者通过kobject_uevent_env()附加更多uevent信息。

kobject_uevent_env()主要分为两部分,一是通过netlink_broadcast_filtered()将socket信息发出去;另一个是通过uevent helper将uevent调用指定的uevent_helper进行处理,通常是热插拔程序mdev、udevd等。

int kobject_uevent(struct kobject *kobj, enum kobject_action action)
{
    return kobject_uevent_env(kobj, action, NULL);
}

int kobject_uevent_env(struct kobject *kobj, enum kobject_action action,
               char *envp_ext[])
{
    struct kobj_uevent_env *env;
    const char *action_string = kobject_actions[action];------------将action转换成字符串。
    const char *devpath = NULL;
    const char *subsystem;
    struct kobject *top_kobj;
    struct kset *kset;
    const struct kset_uevent_ops *uevent_ops;
    int i = 0;
    int retval = 0;
#ifdef CONFIG_NET
    struct uevent_sock *ue_sk;
#endif    top_kobj = kobj;
    while (!top_kobj->kset && top_kobj->parent)
        top_kobj = top_kobj->parent;
...
    kset = top_kobj->kset;
    uevent_ops = kset->uevent_ops;
...
    /* originating subsystem */
    if (uevent_ops && uevent_ops->name)
        subsystem = uevent_ops->name(kset, kobj);
    else
        subsystem = kobject_name(&kset->kobj);
...
    env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL);
    if (!env)
        return -ENOMEM;

    /* complete object path */
    devpath = kobject_get_path(kobj, GFP_KERNEL);
    if (!devpath) {
        retval = -ENOENT;
        goto exit;
    }

    /* default keys */
    retval = add_uevent_var(env, "ACTION=%s", action_string);-----------默认添加ACTION、DEVPATH、SUBSYSTEM三个键值。
    if (retval)
        goto exit;
...
    if (envp_ext) {-----------------------------------------------------将自定义的键值附上。
        for (i = 0; envp_ext[i]; i++) {
            retval = add_uevent_var(env, "%s", envp_ext[i]);
            if (retval)
                goto exit;
        }
    }

    /* let the kset specific function add its stuff */
    if (uevent_ops && uevent_ops->uevent) {
        retval = uevent_ops->uevent(kset, kobj, env);
        if (retval) {
            pr_debug("kobject: '%s' (%p): %s: uevent() returned "
                 "%d\n", kobject_name(kobj), kobj,
                 __func__, retval);
            goto exit;
        }
    }

    if (action == KOBJ_ADD)
        kobj->state_add_uevent_sent = 1;
    else if (action == KOBJ_REMOVE)
        kobj->state_remove_uevent_sent = 1;

    mutex_lock(&uevent_sock_mutex);
...
#if defined(CONFIG_NET)
    /* send netlink message */
    list_for_each_entry(ue_sk, &uevent_sock_list, list) {------------------遍历uevent_sock_list上所有的socket。
        struct sock *uevent_sock = ue_sk->sk;
        struct sk_buff *skb;
        size_t len;

        if (!netlink_has_listeners(uevent_sock, 1))
            continue;

        /* allocate message with the maximum possible size */
        len = strlen(action_string) + strlen(devpath) + 2;
        skb = alloc_skb(len + env->buflen, GFP_KERNEL);--------------------为下面消息发送创建sk_buff实例。
        if (skb) {
            char *scratch;

            /* add header */
            scratch = skb_put(skb, len);
            sprintf(scratch, "%s@%s", action_string, devpath);-------------在已有键值基础上添加action_string@devpath。

            /* copy keys to our continuous event payload buffer */
            for (i = 0; i < env->envp_idx; i++) {
                len = strlen(env->envp[i]) + 1;
                scratch = skb_put(skb, len);
                strcpy(scratch, env->envp[i]);
            }

            NETLINK_CB(skb).dst_group = 1;
            retval = netlink_broadcast_filtered(uevent_sock, skb,
                                0, 1, GFP_KERNEL,
                                kobj_bcast_filter,
                                kobj);--------------------------------------通过netlink_broadcast_filtered()发送skb数据。
            /* ENOBUFS should be handled in userspace */
            if (retval == -ENOBUFS || retval == -ESRCH)
                retval = 0;
        } else
            retval = -ENOMEM;
    }
#endif
    mutex_unlock(&uevent_sock_mutex);

#ifdef CONFIG_UEVENT_HELPER
    /* call uevent_helper, usually only enabled during early boot */
    if (uevent_helper[0] && !kobj_usermode_filter(kobj)) {
        struct subprocess_info *info;

        retval = add_uevent_var(env, "HOME=/");
        if (retval)
            goto exit;
        retval = add_uevent_var(env,
                    "PATH=/sbin:/bin:/usr/sbin:/usr/bin");
        if (retval)
            goto exit;
        retval = init_uevent_argv(env, subsystem);
        if (retval)
            goto exit;

        retval = -ENOMEM;
        info = call_usermodehelper_setup(env->argv[0], env->argv,
                         env->envp, GFP_KERNEL,
                         NULL, cleanup_uevent_env, env);
        if (info) {
            retval = call_usermodehelper_exec(info, UMH_NO_WAIT);
            env = NULL;    /* freed by cleanup_uevent_env */
        }
    }
#endif...
}

int add_uevent_var(struct kobj_uevent_env *env, const char *format, ...)
{
    va_list args;
    int len;

    if (env->envp_idx >= ARRAY_SIZE(env->envp)) {
        WARN(1, KERN_ERR "add_uevent_var: too many keys\n");
        return -ENOMEM;
    }

    va_start(args, format);
    len = vsnprintf(&env->buf[env->buflen],
            sizeof(env->buf) - env->buflen,
            format, args);
    va_end(args);

    if (len >= (sizeof(env->buf) - env->buflen)) {
        WARN(1, KERN_ERR "add_uevent_var: buffer size too small\n");
        return -ENOMEM;
    }

    env->envp[env->envp_idx++] = &env->buf[env->buflen];
    env->buflen += len + 1;
    return 0;
}

static int kobj_bcast_filter(struct sock *dsk, struct sk_buff *skb, void *data)
{
    struct kobject *kobj = data, *ksobj;
    const struct kobj_ns_type_operations *ops;

    ops = kobj_ns_ops(kobj);
    if (!ops && kobj->kset) {
        ksobj = &kobj->kset->kobj;
        if (ksobj->parent != NULL)
            ops = kobj_ns_ops(ksobj->parent);
    }

    if (ops && ops->netlink_ns && kobj->ktype->namespace) {
        const void *sock_ns, *ns;
        ns = kobj->ktype->namespace(kobj);
        sock_ns = ops->netlink_ns(dsk);
        return sock_ns != ns;
    }

    return 0;
}
static int kobj_usermode_filter(struct kobject *kobj)
{
    const struct kobj_ns_type_operations *ops;

    ops = kobj_ns_ops(kobj);
    if (ops) {
        const void *init_ns, *ns;
        ns = kobj->ktype->namespace(kobj);
        init_ns = ops->initial_ns();
        return ns != init_ns;
    }

    return 0;
}

static int init_uevent_argv(struct kobj_uevent_env *env, const char *subsystem)
{
    int len;

    len = strlcpy(&env->buf[env->buflen], subsystem,
              sizeof(env->buf) - env->buflen);
    if (len >= (sizeof(env->buf) - env->buflen)) {
        WARN(1, KERN_ERR "init_uevent_argv: buffer size too small\n");
        return -ENOMEM;
    }

    env->argv[0] = uevent_helper;
    env->argv[1] = &env->buf[env->buflen];
    env->argv[2] = NULL;

    env->buflen += len + 1;
    return 0;
}

static void cleanup_uevent_env(struct subprocess_info *info)
{
    kfree(info->data);
}

kobject_uevent_env()详细解释参考《设备模型的uevent机制》。

2. 用户空间处理uevent

2.1 kernel发送uevent

通过内核发送uevent很简单,将数据代表环境变量的字符串组装好后,选择合适的action,指定对应的kobject设备即可。

static int user_cooling_set_cur_state(struct thermal_cooling_device *cdev,
                 unsigned long new_target_ratio)
{
    int ret = 0, i = 0, temperature = 0;
    char *thermal_prop[4];
    struct thermal_instance *instance;

    list_for_each_entry(instance, &cdev->thermal_instances, cdev_node) {
        if (instance->tz->temperature > temperature)
            temperature = instance->tz->temperature;
    }

    user_cooling_state = new_target_ratio;
    thermal_prop[0] = kasprintf(GFP_KERNEL, "NAME=%s", cdev->type);
    thermal_prop[1] = kasprintf(GFP_KERNEL, "STATE=%lu", new_target_ratio);
    thermal_prop[2] = kasprintf(GFP_KERNEL, "TEMP=%d", temperature);
    thermal_prop[3] = NULL;
    kobject_uevent_env(&cdev->device.kobj, KOBJ_CHANGE, thermal_prop);
    for (i = 0; i < 3; ++i)
        kfree(thermal_prop[i]);

    return ret;
}

通过kobject_uevent_env()可以添加自定义环境变量,用户空间就会收到如下uevent消息。

change@/devices/virtual/thermal/cooling_device0
ACTION=change
DEVPATH=/devices/virtual/thermal/cooling_device0
SUBSYSTEM=thermal
NAME=user_cooling
STATE=1
TEMP=90
SEQNUM=747

2.2 用户空间uevent处理

用户空间首先创建一个socket,并绑定到AF_NETLINK上,然后recv()接收消息,在处理字符串。

#include <stdio.h>
#include <string.h>
#include <sys/types.h>
#include <unistd.h>
#include <stdlib.h>
#include <sys/socket.h>
#include <linux/netlink.h>

#define UEVENT_MSG_LEN 2048
#define USER_COOLING_DEV "/devices/virtual/thermal/cooling_device0"

struct cooling_device {
    const char *name;
    const char *action;
    const char *path;
    int state;
    int temp;    
};

static int open_uevent_socket(void);
static void parse_uevent(const char *msg, struct cooling_device *cdev);

int main(int argc, char* argv[])
{
    int socket_fd = -1;
    char msg[UEVENT_MSG_LEN+2];
    int n;

    socket_fd = open_uevent_socket();--------------------------------------创建socket。
    printf("socket_fd = %d\n", socket_fd);

    do {
        while((n = recv(socket_fd, msg, UEVENT_MSG_LEN, 0)) > 0) {---------接收uevent信息。
            struct cooling_device cdev;
            memset(&cdev, 0x0, sizeof(cdev));

            if(n == UEVENT_MSG_LEN)
                continue;

            msg[n] = '\0';
            msg[n+1] = '\0';

            parse_uevent(msg, &cdev);---------------------------------------解析收到的uevent字符。
        }
    } while(1);
}

static int open_uevent_socket(void)
{
    struct sockaddr_nl addr;
    int sz = 64*1024;
    int s = 0;

    memset(&addr, 0, sizeof(addr));
    addr.nl_family = AF_NETLINK;
    addr.nl_pid = getpid();
    addr.nl_groups = 0xffffffff;

    s = socket(PF_NETLINK, SOCK_DGRAM, NETLINK_KOBJECT_UEVENT);-------------地址族是AF_NETLINK类型的socket,协议类型是NETLINK_KOBJECT_UEVENT。
    if (s < 0) {
        return -1;
    }

    setsockopt(s, SOL_SOCKET, SO_RCVBUFFORCE, &sz, sizeof(sz));

    if (bind(s, (struct sockaddr *) &addr, sizeof(addr)) < 0) {-------------将当前socket绑定到AF_NETLINK地址族,并且设置本进程为处理消息的进程。
        close(s);
        return -1;
    }

    return s;
}

static void parse_uevent(const char *msg, struct cooling_device *cdev)
{
    while (*msg) {
        //printf("%s\n", msg);
        if (!strncmp(msg, "NAME=", 5)) {
            msg += 5;
            cdev->name = msg;
        } else if (!strncmp(msg, "ACTION=", 7)) {
            msg += 7;
            cdev->action = msg;
        } else if (!strncmp(msg, "DEVPATH=", 8)) {
            msg += 8;
            cdev->path = msg;
        } else if (!strncmp(msg, "STATE=", 6)) {
            msg += 6;
            cdev->state = atoi(msg);
        } else if (!strncmp(msg, "TEMP=", 5)) {
            msg += 5;
            cdev->temp = atoi(msg);
        }

        while(*msg++);
    }

    if(!strncmp(cdev->path, USER_COOLING_DEV, sizeof(USER_COOLING_DEV)) && !strncmp(cdev->action, "change", 5))
        printf("event { name=%s, action=%s, path=%s, state=%d, temp=%d}\n",
            cdev->name,    cdev->action, cdev->path, cdev->state, cdev->temp);
}

3. mdev

3.1 buxybox下mdev分析

mdev一种是附加-s主动遍历/sys/dev下设备,另一种是作为hotplug处理程序,被内核uevent_helper调用到。

mdev作为hotplug程序处理时,从环境变量中获取参数,创建或者删除设备,或者加载firmware。

int mdev_main(int argc, char **argv) MAIN_EXTERNALLY_VISIBLE;
int mdev_main(int argc UNUSED_PARAM, char **argv)
{
    RESERVE_CONFIG_BUFFER(temp, PATH_MAX + SCRATCH_SIZE);

    INIT_G();

#if ENABLE_FEATURE_MDEV_CONF
    G.filename = "/etc/mdev.conf";
#endif

    bb_sanitize_stdio();

    umask(0);

    xchdir("/dev");--------------------------------------------------当前工作目录切换到/dev下。

    if (argv[1] && strcmp(argv[1], "-s") == 0) {---------------------mdev -s情况下遍历/sys/dev下面所有设备。
        /*
         * Scan: mdev -s
         */
        struct stat st;

#if ENABLE_FEATURE_MDEV_CONF
        /* Same as xrealloc_vector(NULL, 4, 0): */
        G.rule_vec = xzalloc((1 << 4) * sizeof(*G.rule_vec));
#endif
        xstat("/", &st);
        G.root_major = major(st.st_dev);
        G.root_minor = minor(st.st_dev);

        putenv((char*)"ACTION=add");

        /* Create all devices from /sys/dev hierarchy */
        recursive_action("/sys/dev",
                 ACTION_RECURSE | ACTION_FOLLOWLINKS,
                 fileAction, dirAction, temp, 0);----------------这个函数是递归函数,扫描/sys/dev下所有文件,如果发现dev文件,则按照/etc/mdev.con文件进行相应的设置。
    } else {
        char *fw;
        char *seq;
        char *action;
        char *env_devname;
        char *env_devpath;
        unsigned my_pid;
        unsigned seqnum = seqnum; /* for compiler */
        int seq_fd;
        smalluint op;

        /* Hotplug:
         * env ACTION=... DEVPATH=... SUBSYSTEM=... [SEQNUM=...] mdev
         * ACTION can be "add", "remove", "change"
         * DEVPATH is like "/block/sda" or "/class/input/mice"
         */
        env_devname = getenv("DEVNAME"); /* can be NULL */----------在内核的kobject_uevent_env()中已经将参数和环境变量作为参数传入do_execve()中。这里mdev可以通过getenv来解析。
        G.subsystem = getenv("SUBSYSTEM");
        action = getenv("ACTION");
        env_devpath = getenv("DEVPATH");
        if (!action || !env_devpath /*|| !G.subsystem*/)
            bb_show_usage();
        fw = getenv("FIRMWARE");
        seq = getenv("SEQNUM");
        op = index_in_strings(keywords, action);--------------------keywords仅包含add和remove,所以op也仅有OP_add和OP_remove。
...
        snprintf(temp, PATH_MAX, "/sys%s", env_devpath);
        if (op == OP_remove) {
            /* Ignoring "remove firmware". It was reported
             * to happen and to cause erroneous deletion
             * of device nodes. */
            if (!fw)
                make_device(env_devname, temp, op);-----------------在temp指定的目录下创建env_devnam名称的设备。
        }
        else {
            make_device(env_devname, temp, op);---------------------删除temp目录下名称为env_devname的设备。
            if (ENABLE_FEATURE_MDEV_LOAD_FIRMWARE) {
                if (op == OP_add && fw)
                    load_firmware(fw, temp);------------------------将fw文件加载到temp路径中。
            }
        }
...
    }

    if (ENABLE_FEATURE_CLEAN_UP)
        RELEASE_CONFIG_BUFFER(temp);

    return EXIT_SUCCESS;
}

3.2 mdev.conf规则

下面是mdev.conf配置文件的基本格式:

<device regex> <uid>:<gid> <permissions> [=path] [@|$|*<command>]
<device regex> <uid>:<gid> <permissions> [>path] [@|$|*<command>]
<device regex> <uid>:<gid> <permissions> [!] [@|$|*<command>] 

<device regex>:设备名称,支持正则表达式如hd[a-z][0-9]*等等。

<uid>:<gid>:用户ID和组ID。

<permissions>:表示设备的属性。

[=path]:如果path是个目录(比如drivers/),则将设备节点移动到目录下;如果path是个名称,则将设备节点重命名为这个名称。

  hda 0:3 660 =drivers/:移动hda到drivers目录下。

  hdb 0:3 60 =cdrom:将hdb重命名为cdrom。

[>path]:重命名或者移动设备节点,类似于[=path]。但是同时会在/dev/下创建相关设备节点。

[!]:则不会创建设备节点。

[@<command>]:在创建设备节点之后执行command。

[$<command>]:在移动设备之前执行command。

[*<command>]:在创建设备之后以及移动设备之前都执行command。

上面的<command>通过system()调用执行,并且stdin/stdout/stderr都被重定向到/dev/null中。同时环境变量$MDEV指向匹配成功的设备节点名称,$ACTION表示uevent动作。

3.3 mdev和udev的区别

udev和mdev都是使用uevent机制处理热插拔的用户空间程序。

但是udev通过监听内核发送的uevent消息,解析后进行相应的热插拔擦欧洲哦,包括创建/删除设备节点,加载/卸载驱动程序,加载Firmware等等。

mdev则是基于uevent_helper机制,内核在发送uevent的时候,同时调用uevent_helper指向的用户空间程序进行热插拔处理。

另外udev是作为一个daemon常驻内存的,一直在监听uevent;mdev只是在需要的时候被调用。

4. 小结

uevent是内核发送消息到用户空间的一种途径,这种技术基于netlink实现。

内核中通过kobject_uevent()/kobject_uevent_env()发送uevent消息。

用户空间使用标准的socket接口,等待接收消息,然后进行解析处理;或者通过usermode helper调用用户空间进程mdev进行热插拔处理,处理的方式遵循mdev.conf规则。

posted on 2019-07-28 00:00  ArnoldLu  阅读(12951)  评论(1编辑  收藏  举报

导航