ArmSom--摄像头开发指南(一)

一. 简介

  • RK3588从入门到精通

  • 开发板:ArmSoM-W3

  • Kernel:5.10.160

  • OS:Debian11

  • 本⽂主要介绍在Rockchip平台下Camera相关代码配置,MIPI-CSI调试的通路解析

 

名词解释:

  • CSI ( Camera Serial Interface ):主机处理器与摄像头模块之间的高速串行接口

  • DSI ( Display Serial Interface ):主机处理器与显示模块之间的高速串行接口

  • ISP ( Image Signal Processor ): 即图像信号处理模块, 主要作用是对前端图像传感器输出的信号做后期处理,依赖于 ISP 才能在不同的光学条件下都能较好的还原现场细节。

  • VICAP( Video capture ):视频捕获单元

  • MIPI-DPHY :Rockchip芯片中符合MIPI-DPHY协议的控制器。

 

 

二. MIPI-CSI基础概念

MIPI:移动产业处理器接口(Mobile Industry Processorinterface) 是MIPI联盟发起的为移动应用处理器制定的开放标准。

CSI: MIPI-CSI-2协议是MIPI联盟协议的子协议,专门针对摄像头芯片的接口而设计。

由于其高速,低功耗的特点,MIPI-CSI2协议极大的支持了高清摄像头领域的发展,CSI-2协议遵循的物理标准有两个,分别为C-PHY和D-PHY。

D-PHY与C-PHY区别: 从实用角度来看,主要是数据线和时钟线的区别,还有传输速率,C-PHY通过某些技术改良,使数据传输速度更快。

瑞芯微3588用的DPHY-v1.2 &&(D/C-PHY) DPHY-v2.0。

 

三. MIPI-CSI硬件配置

RK3588 camera 资源硬件拥有2路DCPHY,2路DPHY,一路DVP,6路CSI HOST,一个vicap控制器,2个isp控制器。 其中2路DPHY可以分解成4x2lane的模式工作。

硬件通路框图如下:

 

armsom-camera-channel

 

MIPI-CSI资源介绍 :

TypeMax bandwidthNUMMode
DPHY-v1.2 2.5Gbps x 4 lanes 2 4lane or 2lane+2lane
(D/C-PHY) DPHY-v2.0 DPHY-v2.0: 2.5Gbps x 2lanes 2 DPHY-v2.0: 2lane
CSI-Host For MIPI D-PHY v1.2/D-PHY v2.0/C-PHY v1.1 6  

2lane最大带宽是5G,分辨率可以达到8M30帧,4lane最大带宽达到10G。

 

 

三. MIPI CSI用法

3.1 DPHY

  1. rk3588支持两个dcphy,节点名称分别为csi2_dcphy0/csi2_dcphy1。每个dcphy硬件支持RX/TX 同时使用,对于camera输入使用的是RX。支持DPHY/CPHY协议复用;需要注意的是同一个dcphy的TX/RX 只能同时使用DPHY或同时使用CPHY

  2. rk3588支持2个dphy硬件,这里我们称之为dphy0_hw/dphy1_hw,两个dphy硬件都可以工作在full mode 和split mode两种模式下

Full Mode 仅使用csi2_dphy0,csi2_dphy0与csi2_dphy1/csi2_dphy2互斥,不可同时使用;

data lane最大4 lanes;

最大速率2.5Gbps/lane;

Split Mode 仅使用csi2_dphy1和csi2_dphy2, 与csi2_dphy0互斥,不可同时使用;

csi2_dphy1和csi2_dphy2可同时使用;

csi2_dphy1和csi2_dphy2各自的data lane最大是2 lanes;

csi2_dphy1对应物理dphy的lane0/lane1;

csi2_dphy2对应物理dphy的lane2/lane3;

最大速率2.5Gbps/lane;

 

 

3.2 多sensor支持

硬件支持最多采集7路sensor:6mipi + 1dvp,多sensor软件通路如下:

 

armsom-camera-connect

 

 

四. camera相关配置

4.1 Camera 软件驱动目录

Camera相关驱动文件如下:

|-- arch/arm/boot/dts DTS配置文件

|-- drivers/phy/rockchip

 |-- phy-rockchip-mipi-rx.c mipi dphy驱动

 |-- phy-rockchip-csi2-dphy-common.h

 |-- phy-rockchip-csi2-dphy-hw.c

 |-- phy-rockchip-csi2-dphy.c

|-- drivers/media

 |-- platform/rockchip/cif RKCIF驱动

 |-- platform/rockchip/isp RKISP驱动

   |-- dev 包含 probe、异步注册、clock、pipeline、 iommu及media/v4l2 framework

   |-- capture 包含 mp/sp/rawwr的配置及 vb2,帧中断处理

   |-- dmarx 包含 rawrd的配置及 vb2,帧中断处理

   |-- isp_params 3A相关参数设置

   |-- isp_stats 3A相关统计

   |-- isp_mipi_luma mipi数据亮度统计

   |-- regs 寄存器相关的读写操作

   |-- rkisp isp subdev和entity注册

   |-- csi csi subdev和mipi配置

   |-- bridge bridge subdev,isp和ispp交互桥梁

 |-- platform/rockchip/ispp rkispp驱动

   |-- dev 包含 probe、异步注册、clock、pipeline、 iommu及media/v4l2 framework

   |-- stream 包含 4路video输出的配置及 vb2,帧中断处理

   |-- rkispp ispp subdev和entity注册

 |-- params TNR/NR/SHP/FEC/ORB参数设置

   |-- stats ORB统计信息

|-- i2c

|-- imx415.c CIS(cmos image sensor)驱动

 

 

 

4.2 Sensor驱动开发移植

Sensor 驱动位于 drivers/media/i2c 目录下,Sensor 驱动与 RKCIF 或者 RKISP1 驱动最大程度上独立,二者异步注册,在dts中由 remote-endpoint 声明 连接关系。

Sensor 驱动的开发移植概括为 5 个部分

  • 按照 datasheet 编写上电时序,主要包括 vdd、reset、powerdown、clk 等

  • 配置 sensor 的寄存器以输出所需的分辨率、格式

  • 编写 struct v4l2_subdev_ops 所需要的回调函数,一般包括 set_fmt、get_fmt、s_stream、s_power

  • 增加 v4l2 controller 用来设置如fps、exposure、gain、test pattern

  • 编写 probe()函数,并添加 Media Control 及 Sub Device 初始化代码

Documentation/devicetree/bindings/media/i2c/下面有对驱动的Documentation可供参考,板级 dts 可以根据该文档快速配置。

在板级 dts 中,引用 Sensor 驱动,一般需要:

  • 配置正确的 clk及io mux

  • 根据原理图设置上电时序所需要的 regulator 及 gpio

  • 增加 port 子节点,与 cif 或者 isp 建立连接

 

 

4.2.1 上电时序

不同 Sensor 对上电时序要求不同,可能很大部分的 Sensor 对时序要求不严格,只要 mclk、vdd、reset 和 powerdown 状态是对的、就能正确进行 I2C 通讯并输出图片,而不用关心上电的先后顺序及延时, Sensor 厂家提供的 DataSheet 中,一般会有上电时序图,只需要按顺序配置即可。

1
__imx415_power_on() //控制上电时序部分

  

1
__imx415_power_off() //控制下电时序部分

  

在probe()阶段会去尝试读取 chip id,如 imx415的 imx415_check_sensor_id,

1
2
3
4
5
6
7
ret = __imx415_power_on(imx415);
if (ret)
    goto err_free_handler;
ret = imx415_check_sensor_id(imx415, client);
if (ret)
    goto err_power_off;

  

如果能够正确读取到chip id,一般就认为上电时序正确,Sensor 能够正常进行 i2c 通信

一般在imx415_check_sensor_id()中出现问题、按照以下方式排查

  • 先将__imx415_power_off()注释掉

  • 检查i2c从地址、i2c读函数

  • 可以抓下i2c的波形

 

 

4.2.2 Sensor 初始化寄存器列表

在imx415的驱动中,定义了struct imx415_mode supported_modes[],用来表示Sensor 支持的不同初始化 mode,即Sensor可以输出不同分辨率的图像、不同的fps等。Mode 可以包括如分辨率,Mbus Code,fps,寄存器初始化列表等。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
static const struct imx415_mode supported_modes[] = {
    /*
     * frame rate = 1 / (Vtt * 1H) = 1 / (VMAX * 1H)
     * VMAX >= (PIX_VWIDTH / 2) + 46 = height + 46
     */
    ......
    {
        /* 1H period = (1100 clock) = (1100 * 1 / 74.25MHz) */
        .bus_fmt = MEDIA_BUS_FMT_SGBRG12_1X12,
        .width = 3864,
        .height = 2192,
        .max_fps = {
            .numerator = 10000,
            .denominator = 300000,
        },
        .exp_def = 0x08ca - 0x08,
        .hts_def = 0x044c * IMX415_4LANES * 2,
        .vts_def = 0x08ca,
        .global_reg_list = imx415_global_12bit_3864x2192_regs,
        .reg_list = imx415_linear_12bit_3864x2192_891M_regs,
        .hdr_mode = NO_HDR,
        .mipi_freq_idx = 1,
        .bpp = 12,
        .vc[PAD0] = V4L2_MBUS_CSI2_CHANNEL_0,
    },
    {
        .bus_fmt = MEDIA_BUS_FMT_SGBRG12_1X12,
        .width = 3864,
        .height = 2192,
        .max_fps = {
            .numerator = 10000,
            .denominator = 300000,
        },
        .exp_def = 0x08CA * 2 - 0x0d90,
        .hts_def = 0x0226 * IMX415_4LANES * 2,
        /*
         * IMX415 HDR mode T-line is half of Linear mode,
         * make vts double(that is FSC) to workaround.
         */
        .vts_def = 0x08CA * 2,
        .global_reg_list = imx415_global_12bit_3864x2192_regs,
        .reg_list = imx415_hdr2_12bit_3864x2192_1782M_regs,
        .hdr_mode = HDR_X2,
        .mipi_freq_idx = 3,
        .bpp = 12,
        .vc[PAD0] = V4L2_MBUS_CSI2_CHANNEL_1,
        .vc[PAD1] = V4L2_MBUS_CSI2_CHANNEL_0,//L->csi wr0
        .vc[PAD2] = V4L2_MBUS_CSI2_CHANNEL_1,
        .vc[PAD3] = V4L2_MBUS_CSI2_CHANNEL_1,//M->csi wr2
    },
    ......
};

  

这里支持很多种imx415模组的分辨率配置,默认是3864x2192@30fp,查看下面代码可知会以一种分辨率来做为默认的配置:

1
2
3
4
5
6
7
8
9
10
11
12
13
ret = of_property_read_u32(node, OF_CAMERA_HDR_MODE, &hdr_mode);
    if (ret) {
        hdr_mode = NO_HDR;
        dev_warn(dev, " Get hdr mode failed! no hdr default\n");
    }
    imx415->client = client;
    imx415->cfg_num = ARRAY_SIZE(supported_modes);
    for (i = 0; i < imx415->cfg_num; i++) {
        if (hdr_mode == supported_modes[i].hdr_mode) {
            imx415->cur_mode = &supported_modes[i];
            break;
        }
    }

  

适配新的分辨率需要替换新的初始化列表,例如imx415摄像头,仅支持30帧,但是需要提升到60帧。

sensor本身支持的最大mipi传输速率,每秒传输的数据量是width * height * 10bit * fps,这个也是有上限,不能无限制提高。 IMX415的DateSheet上写的就是支持3864x2192@30fps,要调整为60帧,需要厂家提供一组低分辨率的sensor配置,比如1080P@60fps,然后添加到struct imx415_mode supported_modes[]的.reg_list中,reg_list列表最后用了 REG_NULL 表示结束。

 

 

4.2.3 回调函数

v4l2_subdev_ops 回调函数是 Sensor 驱动中逻辑控制的核心,包含丰富的接口给上层应用调用

1
2
3
4
5
static const struct v4l2_subdev_ops imx415_subdev_ops = {
    .core   = &imx415_core_ops,
    .video  = &imx415_video_ops,
    .pad    = &imx415_pad_ops,
};

  

部分成员函数:

  1. open - Userspace通过在打开/dev/v4l-subdev?节点时,会调用到该.open()函数。

  2. s_power - 包括power on和power off。在这里上电或者下电

  3. enum_mbus_code - 用于枚举支持的媒体总线(Media Bus)格式代码。媒体总线是V4L2系统中用于描述图像格式的标准。这个函数可能会列出IMX415传感器支持的不同媒体总线格式代码。

  4. enum_frame_size - 用于枚举传感器支持的不同帧尺寸(分辨率)。这个函数可能会返回一组可用的帧尺寸选项,供应用程序选择。

  5. enum_frame_interval - 用于枚举传感器支持的不同帧间隔(帧速率)。它会返回可用的帧间隔选项,以供应用程序选择。

  6. get_fmt - 用于获取当前传感器的图像格式。应用程序可以使用它来查询当前设置的图像格式。

  7. set_fmt - 用于设置传感器的图像格式。应用程序可以使用它来配置所需的图像格式。

  8. get_selection - 用于获取当前传感器的图像选择(ROI - Region of Interest)。这允许应用程序了解当前的感兴趣区域设置。

  9. get_mbus_config - 用于获取媒体总线配置,包括数据总线宽度、时序等信息。

这些函数在V4L2子设备的驱动程序中起着关键的作用,允许应用程序配置和控制IMX415传感器,以捕获图像和视频数据。

 

 

4.3 DTS配置

这里是单路Camera的dts配置说明,以imx415摄像头为例 。

  • 案例场景:这里使用的是csi2_dphy0的单路camera配置:

  • 链路配置: imx415 —> csi2_dphy0 —> mipi2_csi2 —> rkcif_mipi_lvds2—>rkcif_mipi_lvds2_sditf —>rkisp0_vir2

在这个通路下,会注册medio0和medio1这两个节点。

 

 

4.3.1 配置sensor端

我们需要根据板子原理图的MIPI CSI接口找到sensor是挂在哪个I2C总线上,然后在对应的I2C节点配置camera节点,正确配置camera模组的I2C设备地址、引脚等属性。sensor对应驱动路径在kernel\drivers\media\i2c下面。 下面是imx415配置:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
&i2c3 {
    status = "okay";
    imx415: imx415@1a {
        status = "okay";
        compatible = "sony,imx415";// 需要与驱动中的匹配字符串一致
        reg = <0x1a>;              // sensor I2C设备地址,7位
        clocks = <&cru CLK_MIPI_CAMARAOUT_M3>; // sensor mclk源配置
        clock-names = "xvclk";
        pinctrl-names = "default";
        pinctrl-0 = <&mipim0_camera3_clk>; //sensor 相关电源域使能
        power-domains = <&power RK3588_PD_VI>;
        pwdn-gpios = <&gpio1 RK_PB0 GPIO_ACTIVE_HIGH>;
        reset-gpios = <&gpio4 RK_PA0 GPIO_ACTIVE_LOW>;
        rockchip,camera-module-index = <0>;
        rockchip,camera-module-facing = "back"; // 模组朝向,有"back"和"front"
        rockchip,camera-module-name = "CMK-OT2022-PX1";
        rockchip,camera-module-lens-name = "IR0147-50IRC-8M-F20";
        port {
            imx415_out0: endpoint {
                remote-endpoint = <&mipidphy0_in_ucam0>;
                data-lanes = <1 2 3 4>;
            };
        };
    };
};

  

注意:

data-lanes必须指明具体使用的lane数,否则无法识别为mipi 类型;

module-index与iq文件中的moduleId相关,<0>对应moduleId配置为m00,<1>对应moduleId配置为m01,m是“module”的缩写,01是十进制数字;

module-name与module-lens-name命令与设备/etc/iqfiles中对应sensor的iq文件名后面相同。这里对应的Sensor iq文件是“imx415_CMK-OT2022-PX1_IR0147-50IRC-8M-F20.json”,注意大小写有区分

 

 

4.3.2 csi2_dphy0配置

csi2_dphy0与csi2_dphy1/csi2_dphy2互斥,不可同时使用。另外需要使能csi2_dphy0_hw物理节点


1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
&csi2_dphy0_hw {
    status = "okay";
};
&csi2_dphy0 {
    status = "okay";
    ports {
        #address-cells = <1>;
        #size-cells = <0>;
        port@0 {
            reg = <0>;
            #address-cells = <1>;
            #size-cells = <0>;
            mipidphy0_in_ucam0: endpoint@1 {
                reg = <1>;
                remote-endpoint = <&imx415_out0>; // sensor端的 port名
                data-lanes = <1 2 3 4>;
            };
        };
        port@1 {
            reg = <1>;
            #address-cells = <1>;
            #size-cells = <0>;
            csidphy0_out: endpoint@0 {
                reg = <0>;
                remote-endpoint = <&mipi2_csi2_input>;  csi2 host端的port名
            };
        };
    };
};
&mipi2_csi2 {
    status = "okay";
    ports {
        #address-cells = <1>;
        #size-cells = <0>;
        port@0 {
            reg = <0>;
            #address-cells = <1>;
            #size-cells = <0>;
            mipi2_csi2_input: endpoint@1 {
                reg = <1>;
                remote-endpoint = <&csidphy0_out>;
            };
        };
        port@1 {
            reg = <1>;
            #address-cells = <1>;
            #size-cells = <0>;
            mipi2_csi2_output: endpoint@0 {
                reg = <0>;
                remote-endpoint = <&cif_mipi2_in0>;
            };
        };
    };
};
&rkcif {
    status = "okay";
};
&rkcif_mmu {
    status = "okay";
};
&rkcif_mipi_lvds2 {
    status = "okay";
    port {
        cif_mipi2_in0: endpoint {
            remote-endpoint = <&mipi2_csi2_output>;
        };
    };
};

  

 

 

 

4.3.3 isp相关配置

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
&rkcif_mipi_lvds2_sditf {
    status = "okay";
    port {
        mipi_lvds2_sditf: endpoint {
            remote-endpoint = <&isp0_vir0>;
        };
    };
};
&rkisp0 {
    status = "okay";
};
&isp0_mmu {
    status = "okay";
};
&rkisp0_vir0 {
    status = "okay";
    port {
        #address-cells = <1>;
        #size-cells = <0>;
        isp0_vir0: endpoint@0 {
            reg = <0>;
            remote-endpoint = <&mipi_lvds2_sditf>;
        };
    };
};

  

一个ISP可以接多个Sensor,但只能分时复用。通过配置dts,将多个Sensor链接到MIPI DPHY后,可通过media-ctl切换Sensor。

 

 

4.4 多摄像头配置

上述是单目4lan摄像头的配置,DPHY处于Full Mode下,这里有一份DPHY处于Split Mode下,配置四个2lan摄像头的例子:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
// SPDX-License-Identifier: (GPL-2.0+ OR MIT)
/*
 * Copyright (c) 2021 Rockchip Electronics Co., Ltd.
 *
 */
/ {
    vcc_mipicsi0: vcc-mipicsi0-regulator {
        compatible = "regulator-fixed";
        gpio = <&gpio1 RK_PB1 GPIO_ACTIVE_HIGH>;
        pinctrl-names = "default";
        pinctrl-0 = <&mipicsi0_pwr>;
        regulator-name = "vcc_mipicsi0";
        enable-active-high;
    };
    vcc_mipicsi1: vcc-mipicsi1-regulator {
        compatible = "regulator-fixed";
        gpio = <&gpio1 RK_PB2 GPIO_ACTIVE_HIGH>;
        pinctrl-names = "default";
        pinctrl-0 = <&mipicsi1_pwr>;
        regulator-name = "vcc_mipicsi1";
        enable-active-high;
    };
};
&pinctrl {
    cam {
        mipicsi0_pwr: mipicsi0-pwr {
            rockchip,pins =
            <1 RK_PB1 RK_FUNC_GPIO &pcfg_pull_none>;
        };
        mipicsi1_pwr: mipicsi1-pwr {
            rockchip,pins =
            <1 RK_PB2 RK_FUNC_GPIO &pcfg_pull_none>;
        };
    };
};
&csi2_dphy0_hw {
    status = "okay";
};
&csi2_dphy1_hw {
    status = "okay";
};
&csi2_dphy1 {
    status = "okay";
    ports {
        #address-cells = <1>;
        #size-cells = <0>;
        port@0 {
            reg = <0>;
            #address-cells = <1>;
            #size-cells = <0>;
            mipi_in_ucam2: endpoint@1 {
                reg = <1>;
                remote-endpoint = <&imx464_out2>;
                data-lanes = <1 2>;
            };
        };
        port@1 {
            reg = <1>;
            #address-cells = <1>;
            #size-cells = <0>;
            csidphy1_out: endpoint@0 {
                reg = <0>;
                remote-endpoint = <&mipi2_csi2_input>;
            };
        };
    };
};
&csi2_dphy2 {
    status = "okay";
    ports {
        #address-cells = <1>;
        #size-cells = <0>;
        port@0 {
            reg = <0>;
            #address-cells = <1>;
            #size-cells = <0>;
            mipi_in_ucam3: endpoint@1 {
                reg = <1>;
                remote-endpoint = <&imx464_out3>;
                data-lanes = <1 2>;
            };
        };
        port@1 {
            reg = <1>;
            #address-cells = <1>;
            #size-cells = <0>;
            csidphy2_out: endpoint@0 {
                reg = <0>;
                remote-endpoint = <&mipi3_csi2_input>;
            };
        };
    };
};
&csi2_dphy4 {
    status = "okay";
    ports {
        #address-cells = <1>;
        #size-cells = <0>;
        port@0 {
            reg = <0>;
            #address-cells = <1>;
            #size-cells = <0>;
            mipi_in_ucam4: endpoint@1 {
                reg = <1>;
                remote-endpoint = <&imx464_out4>;
                data-lanes = <1 2>;
            };
        };
        port@1 {
            reg = <1>;
            #address-cells = <1>;
            #size-cells = <0>;
            csidphy4_out: endpoint@0 {
                reg = <0>;
                remote-endpoint = <&mipi4_csi2_input>;
            };
        };
    };
};
&csi2_dphy5 {
    status = "okay";
    ports {
        #address-cells = <1>;
        #size-cells = <0>;
        port@0 {
            reg = <0>;
            #address-cells = <1>;
            #size-cells = <0>;
            mipi_in_ucam5: endpoint@1 {
                reg = <1>;
                remote-endpoint = <&imx464_out5>;
                data-lanes = <1 2>;
            };
        };
        port@1 {
            reg = <1>;
            #address-cells = <1>;
            #size-cells = <0>;
            csidphy5_out: endpoint@0 {
                reg = <0>;
                remote-endpoint = <&mipi5_csi2_input>;
            };
    };
    };
};
&i2c5 {
    status = "okay";
    pinctrl-0 = <&i2c5m3_xfer>;
    /* module 77/79 0x1a 78/80 0x36 */
    imx464_2: imx464-2@1a {
    compatible = "sony,imx464";
    status = "okay";
    reg = <0x1a>;
    clocks = <&cru CLK_MIPI_CAMARAOUT_M3>;
    clock-names = "xvclk";
    power-domains = <&power RK3588_PD_VI>;
    pinctrl-names = "default";
    pinctrl-0 = <&mipim0_camera3_clk>;
    avdd-supply = <&vcc_mipicsi0>;
    reset-gpios = <&gpio1 RK_PA4 GPIO_ACTIVE_HIGH>;
    pwdn-gpios = <&gpio1 RK_PB3 GPIO_ACTIVE_HIGH>;
    rockchip,camera-module-sync-mode = "internal_master";
    rockchip,camera-module-index = <2>;
    rockchip,camera-module-facing = "back";
    rockchip,camera-module-name = "CMK-OT1980-PX1";
    rockchip,camera-module-lens-name = "SHG102";
    port {
    imx464_out2: endpoint {
    remote-endpoint = <&mipi_in_ucam2>;
    data-lanes = <1 2>;
    };
    };
    };
    imx464_3: imx464-3@36 {
    compatible = "sony,imx464";
    status = "okay";
    reg = <0x36>;
    clocks = <&cru CLK_MIPI_CAMARAOUT_M3>;
    clock-names = "xvclk";
    power-domains = <&power RK3588_PD_VI>;
    avdd-supply = <&vcc_mipicsi0>;
    pwdn-gpios = <&gpio1 RK_PA7 GPIO_ACTIVE_HIGH>;
    rockchip,camera-module-sync-mode = "external_master";
    rockchip,camera-module-index = <3>;
    rockchip,camera-module-facing = "back";
    rockchip,camera-module-name = "CMK-OT1980-PX1";
    rockchip,camera-module-lens-name = "SHG102";
    port {
    imx464_out3: endpoint {
    remote-endpoint = <&mipi_in_ucam3>;
    data-lanes = <1 2>;
    };
    };
    };
};
&i2c4 {
    status = "okay";
    pinctrl-0 = <&i2c4m3_xfer>;
    /* 77/79 0x1a 78/80 0x36 */
    imx464_4: imx464-4@1a {
    compatible = "sony,imx464";
    status = "okay";
    reg = <0x1a>;
    clocks = <&cru CLK_MIPI_CAMARAOUT_M4>;
    clock-names = "xvclk";
    power-domains = <&power RK3588_PD_VI>;
    pinctrl-names = "default";
    pinctrl-0 = <&mipim0_camera4_clk>;
    avdd-supply = <&vcc_mipicsi1>;
    reset-gpios = <&gpio1 RK_PB5 GPIO_ACTIVE_HIGH>;
    pwdn-gpios = <&gpio1 RK_PB4 GPIO_ACTIVE_HIGH>;
    rockchip,camera-module-sync-mode = "external_master";
    rockchip,camera-module-index = <0>;
    rockchip,camera-module-facing = "back";
    rockchip,camera-module-name = "CMK-OT1980-PX1";
    rockchip,camera-module-lens-name = "SHG102";
    port {
    imx464_out4: endpoint {
    remote-endpoint = <&mipi_in_ucam4>;
    data-lanes = <1 2>;
    };
    };
    };
    imx464_5: imx464-5@36 {
    compatible = "sony,imx464";
    status = "okay";
    reg = <0x36>;
    clocks = <&cru CLK_MIPI_CAMARAOUT_M4>;
    clock-names = "xvclk";
    power-domains = <&power RK3588_PD_VI>;
    avdd-supply = <&vcc_mipicsi1>;
    pwdn-gpios = <&gpio1 RK_PB0 GPIO_ACTIVE_HIGH>;
    rockchip,camera-module-sync-mode = "external_master";
    rockchip,camera-module-index = <1>;
    rockchip,camera-module-facing = "back";
    rockchip,camera-module-name = "CMK-OT1980-PX1";
    rockchip,camera-module-lens-name = "SHG102";
    port {
    imx464_out5: endpoint {
    remote-endpoint = <&mipi_in_ucam5>;
    data-lanes = <1 2>;
    };
    };
    };
};
&mipi2_csi2 {
    status = "okay";
    ports {
    #address-cells = <1>;
    #size-cells = <0>;
    port@0 {
    reg = <0>;
    #address-cells = <1>;
    #size-cells = <0>;
    mipi2_csi2_input: endpoint@1 {
    reg = <1>;
    remote-endpoint = <&csidphy1_out>;
    };
    };
    port@1 {
    reg = <1>;
    #address-cells = <1>;
    #size-cells = <0>;
    mipi2_csi2_output: endpoint@0 {
    reg = <0>;
    remote-endpoint = <&cif_mipi_in2>;
    };
    };
    };
};
&mipi3_csi2 {
    status = "okay";
    ports {
    #address-cells = <1>;
    #size-cells = <0>;
    port@0 {
    reg = <0>;
    #address-cells = <1>;
    #size-cells = <0>;
    mipi3_csi2_input: endpoint@1 {
    reg = <1>;
    remote-endpoint = <&csidphy2_out>;
    };
    };
    port@1 {
    reg = <1>;
    #address-cells = <1>;
    #size-cells = <0>;
    mipi3_csi2_output: endpoint@0 {
    reg = <0>;
    remote-endpoint = <&cif_mipi_in3>;
    };
    };
    };
};
&mipi4_csi2 {
    status = "okay";
    ports {
    #address-cells = <1>;
    #size-cells = <0>;
    port@0 {
    reg = <0>;
    #address-cells = <1>;
    #size-cells = <0>;
    mipi4_csi2_input: endpoint@1 {
    reg = <1>;
    remote-endpoint = <&csidphy4_out>;
    };
    };
    port@1 {
    reg = <1>;
    #address-cells = <1>;
    #size-cells = <0>;
    mipi4_csi2_output: endpoint@0 {
    reg = <0>;
    remote-endpoint = <&cif_mipi_in4>;
    };
    };
    };
};
&mipi5_csi2 {
    status = "okay";
    ports {
    #address-cells = <1>;
    #size-cells = <0>;
    port@0 {
    reg = <0>;
    #address-cells = <1>;
    #size-cells = <0>;
    mipi5_csi2_input: endpoint@1 {
    reg = <1>;
    remote-endpoint = <&csidphy5_out>;
    };
    };
    port@1 {
    reg = <1>;
    #address-cells = <1>;
    #size-cells = <0>;
    mipi5_csi2_output: endpoint@0 {
    reg = <0>;
    remote-endpoint = <&cif_mipi_in5>;
    };
    };
    };
};
&rkcif {
    status = "okay";
};
&rkcif_mipi_lvds2 {
    status = "okay";
    port {
    cif_mipi_in2: endpoint {
    remote-endpoint = <&mipi2_csi2_output>;
    };
    };
};
&rkcif_mipi_lvds2_sditf {
    status = "okay";
    port {
    mipi2_lvds_sditf: endpoint {
    remote-endpoint = <&isp0_vir0>;
    };
    };
};
&rkcif_mipi_lvds3 {
    status = "okay";
    port {
    cif_mipi_in3: endpoint {
    remote-endpoint = <&mipi3_csi2_output>;
    };
    };
};
&rkcif_mipi_lvds3_sditf {
    status = "okay";
    port {
    mipi3_lvds_sditf: endpoint {
    remote-endpoint = <&isp1_vir0>;
    };
    };
};
&rkcif_mipi_lvds4 {
    status = "okay";
    port {
    cif_mipi_in4: endpoint {
    remote-endpoint = <&mipi4_csi2_output>;
    };
    };
};
&rkcif_mipi_lvds4_sditf {
    status = "okay";
    port {
    mipi4_lvds_sditf: endpoint {
    remote-endpoint = <&isp0_vir1>;
    };
    };
};
&rkcif_mipi_lvds5 {
    status = "okay";
    port {
    cif_mipi_in5: endpoint {
    remote-endpoint = <&mipi5_csi2_output>;
    };
    };
};
&rkcif_mipi_lvds5_sditf {
    status = "okay";
    port {
    mipi5_lvds_sditf: endpoint {
    remote-endpoint = <&isp1_vir1>;
    };
    };
};
&rkcif_mmu {
    status = "okay";
};
&rkisp0 {
    status = "okay";
};
&isp0_mmu {
    status = "okay";
};
&rkisp0_vir0 {
    status = "okay";
    port {
    #address-cells = <1>;
    #size-cells = <0>;
    isp0_vir0: endpoint@0 {
    reg = <0>;
    remote-endpoint = <&mipi2_lvds_sditf>;
    };
    };
};
&rkisp0_vir1 {
    status = "okay";
    port {
    #address-cells = <1>;
    #size-cells = <0>;
    isp0_vir1: endpoint@0 {
    reg = <0>;
    remote-endpoint = <&mipi4_lvds_sditf>;
    };
    };
};
&rkisp1 {
    status = "okay";
};
&isp1_mmu {
    status = "okay";
};
&rkisp1_vir0 {
    status = "okay";
    port {
    #address-cells = <1>;
    #size-cells = <0>;
    isp1_vir0: endpoint@0 {
    reg = <0>;
    remote-endpoint = <&mipi3_lvds_sditf>;
    };
    };
};
&rkisp1_vir1 {
    status = "okay";
    port {
    #address-cells = <1>;
    #size-cells = <0>;
    isp1_vir1: endpoint@0 {
    reg = <0>;
    remote-endpoint = <&mipi5_lvds_sditf>;
    };
    };
};

  

链路配置:

1
2
3
4
5
6
7
imx464 _1—> csi2_dphy1 —> mipi2_csi2 —> rkcif_mipi_lvds2—>rkcif_mipi_lvds2_sditf —>rkisp0_vir0
imx464 _2—> csi2_dphy2 —> mipi3_csi2 —> rkcif_mipi_lvds3—>rkcif_mipi_lvds3_sditf —>rkisp0_vir1
imx464 _3—> csi2_dphy4 —> mipi4_csi2 —> rkcif_mipi_lvds4—>rkcif_mipi_lvds4_sditf —>rkisp1_vir0
imx464 _4—> csi2_dphy5 —> mipi5_csi2 —> rkcif_mipi_lvds5—>rkcif_mipi_lvds5_sditf —>rkisp1_vir0

  

这里配置四个同一型号的摄像头,如果是有其他类型的摄像头需要添加,更新、替换相应的sensor驱动。

 

 

五. 结语

这里借用ArmSoM-W3开发板上的imx415模组介绍在rockchip平台关于camera的部分配置 ,在开发和配置摄像头驱动时,每个具体型号的摄像头可能有其独特的设置和要求。如果你对其他型号的摄像头或其他嵌入式系统组件有疑问,或者需要更多定制的帮助,可以在ArmSom论坛提出问题,与其他开发者分享经验和获取支持。

posted @   ArmSoM开源硬件  阅读(600)  评论(0编辑  收藏  举报
相关博文:
阅读排行:
· 震惊!C++程序真的从main开始吗?99%的程序员都答错了
· 别再用vector<bool>了!Google高级工程师:这可能是STL最大的设计失误
· 单元测试从入门到精通
· 【硬核科普】Trae如何「偷看」你的代码?零基础破解AI编程运行原理
· 上周热点回顾(3.3-3.9)
点击右上角即可分享
微信分享提示