【STM32H7教程】第48章 STM32H7的FMC总线应用之是32路高速IO扩展

完整教程下载地址:http://www.armbbs.cn/forum.php?mod=viewthread&tid=86980

第48章       STM32H7的FMC总线应用之是32路高速IO扩展

本章教程为大家讲解利用STM32H7的FMC总线扩展出32路高速IO,且使用简单,实际项目中也比较有实用价值。

48.1 初学者重要提示

48.2 FMC扩展IO硬件设计

48.3 FMC扩展IO驱动设计

48.4 FMC扩展IO板级支持包(bsp_fmc_io.c)

48.5 FMC扩展IO驱动移植和使用

48.6 实验例程设计框架

48.7 实验例程说明(MDK)

48.8 实验例程说明(IAR)

48.9 总结

 

 

48.1 初学者重要提示

  1.   学习本章节前,务必优先学习第47章,需要对FMC的基础知识和HAL库的几个常用API有个认识。
  2.   为什么要做IO扩展,不是已经用了240脚的H743XIH6吗?因为开发板使用了32位SDRAM和RGB888硬件接口,消耗IO巨大,所以必须得扩展了。
  3.   扩展的32路高速IO非常实用,且使用简单,只需初始下FMC,32路IO就可以随意使用了。当前的扩展方式只支持高速输出。
  4.   FMC总线扩展32路高速IO理解成GPIO的ODR寄存器就很简单了,其实就是一个东西。

FMC扩展IO是对地址0x60001000的32bit数据空间的0和1的操作。GPIOA的ODR寄存器是对地址 0x40000000 + 0x18020000 + 0x14 空间的操作。但只能操作16个引脚。

使用总线的优势就在这里了,相当于在GPIOA到GPIOK的基础上,又扩展出GPIOL和GPIOM。

#define PERIPH_BASE            ((uint32_t)0x40000000)
#define D3_AHB1PERIPH_BASE     (PERIPH_BASE + 0x18020000)
#define GPIOA_BASE             (D3_AHB1PERIPH_BASE + 0x0000)
#define GPIOA                  ((GPIO_TypeDef *) GPIOA_BASE)

typedef struct
{
  __IO uint32_t MODER;    /*!< GPIO port mode register,               Address offset: 0x00      */
  __IO uint32_t OTYPER;   /*!< GPIO port output type register,        Address offset: 0x04      */
  __IO uint32_t OSPEEDR;  /*!< GPIO port output speed register,       Address offset: 0x08      */
  __IO uint32_t PUPDR;    /*!< GPIO port pull-up/pull-down register,  Address offset: 0x0C      */
  __IO uint32_t IDR;      /*!< GPIO port input data register,         Address offset: 0x10      */
  __IO uint32_t ODR;      /*!< GPIO port output data register,        Address offset: 0x14      */
  __IO uint16_t BSRRL;    /*!< GPIO port bit set/reset low register,  Address offset: 0x18      */
  __IO uint16_t BSRRH;    /*!< GPIO port bit set/reset high register, Address offset: 0x1A      */
  __IO uint32_t LCKR;     /*!< GPIO port configuration lock register, Address offset: 0x1C      */
  __IO uint32_t AFR[2];   /*!< GPIO alternate function registers,     Address offset: 0x20-0x24 */
} GPIO_TypeDef;

 

48.2 FMC扩展IO硬件设计

扩展IO涉及到的知识点稍多,下面逐一为大家做个说明。

48.2.1 第1步,先来看FMC的块区分配

注,这个知识点在前面第47章的2.3小节有详细说明。

FMC总线可操作的地址范围0x60000000到0xDFFFFFFF,具体的框图如下:

 

从上面的框图可以看出,NOR/PSRAM/SRAM块区有4个片选NE1,NE2,NE3和NE4,但由于引脚复用,部分片选对应的引脚要用于其他功能,而且要控制的总线外设较多,导致片选不够用。因此需要增加译码器。

48.2.2 第2步,增加译码器及其地址计算

有了前面的认识之后再来看下面的译码器电路:

 

SN74LVC1G139APWR是双2-4线地址译码器,也就是带了两个译码器。原理图上仅用了一个。下面是139的真值表和引脚功能:

 

 

通过上面的原理图和真值表就比较好理解了,真值表的输出是由片选FMC_NE1和地址线FMC_A10、FMC_A11控制。

FMC_NE1 输出低电平:

  •   FMC_A11(B),FMC_A10(A) = 00时,1Y0输出的低电平,选择的是OLED。
  •   FMC_A11(B),FMC_A10(A) = 01时,1Y1输出的低电平,选择的是74HC574。
  •   FMC_A11(B),FMC_A10(A) = 10时,1Y2输出的低电平,选择的是DM9000。
  •   FMC_A11(B),FMC_A10(A) = 11时,1Y3输出的低电平,选择的是AD7606。

然后我们再计算译码器的地址,注意,这里地址的计算都是按照FMC的32bit访问模式计算的,因为我们的V7程序中是将NE1对应的FMC配置为32bit模式了。

具体FMC的32bit访问模式,16bit访问模式和8bit访问模式的区别在第47章的2.4小节有详细讲解。

 

32bit模式下,我们计算A10和A11的时候,实际上需要按HADDR12和HADDR13计算的。

如果来算NE1 + HADDR12 + HADDR13的四种组合地址就是如下:

NE1 + HADDR13 + HADDR12 = 0x6000000 +  0<<13 + 0<<12 = 0x60000000

NE1 + HADDR13 + HADDR12 = 0x6000000 +  0<<13 + 1<<12 = 0x60001000

NE1 + HADDR13 + HADDR12 = 0x6000000 +  1<<13 + 0<<12 = 0x60002000

NE1 + HADDR13 + HADDR12 = 0x6000000 +  1<<13 + 1<<12 = 0x60003000

这样一来,原理图里面给的地址就对应上了。同理如果配置为16位模式和8位模式,大家应该也都会计算了。

48.2.3 第3步,FMC的IO扩展部分

先来看下IO扩展的原理图实现,如果不太了解FMC的通信时序和数字逻辑芯片的使用,可能会比较懵,下面逐一为大家说明。

 

有了这个原理图,首先要做的就是了解74HC574和SN74HC02的功能。

74HC574是一款8位三态D触发器,起到锁存的功能,上升沿触发,对应的真值表如下(L表示低电平,H表示高电平,Z表示高阻):

 

SN74HC02是一款2输入或非门,一个芯片带了四组或非门,对应的真值表如下(L表示低电平,H表示高电平):

 

有了这个认识后,我们再来看FMC的配置,V7开发板的BSP驱动包里面专门做了一个IO扩展的FMC配置,即文件bsp_fmc_io.c,配置方式是FMC_AccessMode_A,这种模式对应的写时序是:

 

那么问题来了,我们要实现的功能是通过FMC输出的数据要锁存在扩展IO的输出端,否则FMC时序信号消失了,扩展IO的输出数据也消失了,就起不到控制作用了。所以就用到74HC574的锁存功能,而锁存的实现需要一个上升沿触发,这个上升沿就是通过74HC02输出的。

再结合上面FMC写时序图,在NE片选为低电平,NWE写使能信号为高电平期间,即地址建立时间段ADDSET内,74HC02是输出的低电平。

进入到DATAST数据建立阶段,在NE片选为低电平,NWE写使能信号也为低电平时,74HC02输出高电平,正好是实现1个上升沿的变化,将数据总线上的数据锁存到74HC574的输出端了。这里隐含了一个知识点,数据还没有完全建立起来就锁存是不是会有问题。在下面的3.3小节配置具体时序参数时再为大家说明。

48.2.4 第4步,举例扩展IO驱动LED应用

进行到这里,再回过头来看LED驱动就比较好理解了。操作LED的亮灭就是操作FMC的数据引脚D8,D9,D10和D11。

 

 

对地址0x64001000发送数据就可以了,但是如何对这个地址发送数据呢? 反映到C语言的实现上就是通过固定地址的指针变量(跟我们操作寄存器是一样的),即

#define  HC574_PORT     *(uint32_t *)0x64001000

如果要点亮LED1(低电平点亮),就是 HC574_PORT = 0x0000 0000。

如果要熄灭LED1就是HC574_PORT = 0x0000 0100,即操作FMC_D8的高低电平即可。

48.3 FMC扩展IO驱动设计

下面将程序设计中的相关问题逐一为大家做个说明。

48.3.1 FMC扩展IO所涉及到的GPIO配置

这里仅需把用到的GPIO时钟、FMC时钟、GPIO引脚和复用配置好即可:

/*
*********************************************************************************************************
*    函 数 名: HC574_ConfigGPIO
*    功能说明: 配置GPIO,FMC管脚设置为复用功能
*    形    参:  无
*    返 回 值: 无
*********************************************************************************************************
*/
static void HC574_ConfigGPIO(void)
{
/*
    安富莱STM32-H7开发板接线方法:4片74HC574挂在FMC 32位总线上。1个地址端口可以扩展出32个IO
    PD0/FMC_D2
    PD1/FMC_D3
    PD4/FMC_NOE        ---- 读控制信号,OE = Output Enable , N 表示低有效
    PD5/FMC_NWE        -XX- 写控制信号,AD7606 只有读,无写信号
    PD8/FMC_D13
    PD9/FMC_D14
    PD10/FMC_D15
    PD14/FMC_D0
    PD15/FMC_D1

    PE7/FMC_D4
    PE8/FMC_D5
    PE9/FMC_D6
    PE10/FMC_D7
    PE11/FMC_D8
    PE12/FMC_D9
    PE13/FMC_D10
    PE14/FMC_D11
    PE15/FMC_D12
    
    PG0/FMC_A10        --- 和主片选FMC_NE2一起译码
    PG1/FMC_A11        --- 和主片选FMC_NE2一起译码
    XX --- PG9/FMC_NE2        --- 主片选(OLED, 74HC574, DM9000, AD7606)    
     --- PD7/FMC_NE1        --- 主片选(OLED, 74HC574, DM9000, AD7606)    
    
     +-------------------+------------------+
     +   32-bits Mode: D31-D16              +
     +-------------------+------------------+
     | PH8 <-> FMC_D16   | PI0 <-> FMC_D24  |
     | PH9 <-> FMC_D17   | PI1 <-> FMC_D25  |
     | PH10 <-> FMC_D18  | PI2 <-> FMC_D26  |
     | PH11 <-> FMC_D19  | PI3 <-> FMC_D27  |
     | PH12 <-> FMC_D20  | PI6 <-> FMC_D28  |
     | PH13 <-> FMC_D21  | PI7 <-> FMC_D29  |
     | PH14 <-> FMC_D22  | PI9 <-> FMC_D30  |
     | PH15 <-> FMC_D23  | PI10 <-> FMC_D31 |
     +------------------+-------------------+    
*/    

    GPIO_InitTypeDef gpio_init_structure;

    /* 使能 GPIO时钟 */
    __HAL_RCC_GPIOD_CLK_ENABLE();
    __HAL_RCC_GPIOE_CLK_ENABLE();
    __HAL_RCC_GPIOG_CLK_ENABLE();
    __HAL_RCC_GPIOH_CLK_ENABLE();
    __HAL_RCC_GPIOI_CLK_ENABLE();


    /* 使能FMC时钟 */
    __HAL_RCC_FMC_CLK_ENABLE();

    /* 设置 GPIOD 相关的IO为复用推挽输出 */
    gpio_init_structure.Mode = GPIO_MODE_AF_PP;
    gpio_init_structure.Pull = GPIO_PULLUP;
    gpio_init_structure.Speed = GPIO_SPEED_FREQ_VERY_HIGH;
    gpio_init_structure.Alternate = GPIO_AF12_FMC;
    
    /* 配置GPIOD */
    gpio_init_structure.Pin = GPIO_PIN_0 | GPIO_PIN_1 | GPIO_PIN_4 | GPIO_PIN_5 | GPIO_PIN_7 |
                                GPIO_PIN_8 | GPIO_PIN_9 | GPIO_PIN_10 | GPIO_PIN_14 |
                                GPIO_PIN_15;
    HAL_GPIO_Init(GPIOD, &gpio_init_structure);

    /* 配置GPIOE */
    gpio_init_structure.Pin = GPIO_PIN_7 | GPIO_PIN_8 | GPIO_PIN_9 | GPIO_PIN_10 |
                                GPIO_PIN_11 | GPIO_PIN_12 | GPIO_PIN_13 | GPIO_PIN_14 |
                                GPIO_PIN_15;
    HAL_GPIO_Init(GPIOE, &gpio_init_structure);

    /* 配置GPIOG */
    gpio_init_structure.Pin = GPIO_PIN_0 | GPIO_PIN_1;
    HAL_GPIO_Init(GPIOG, &gpio_init_structure);
    
    /* 配置GPIOH */
    gpio_init_structure.Pin = GPIO_PIN_8 | GPIO_PIN_9 | GPIO_PIN_10 | GPIO_PIN_11 | GPIO_PIN_12
                        | GPIO_PIN_13 | GPIO_PIN_14 | GPIO_PIN_15;
    HAL_GPIO_Init(GPIOH, &gpio_init_structure);

    /* 配置GPIOI */
    gpio_init_structure.Pin = GPIO_PIN_0 | GPIO_PIN_1 | GPIO_PIN_2 | GPIO_PIN_3 | GPIO_PIN_6
                        | GPIO_PIN_7 | GPIO_PIN_9 | GPIO_PIN_10;
    HAL_GPIO_Init(GPIOI, &gpio_init_structure);
}

 

48.3.2 FMC扩展IO时钟源选择

使用FMC可以选择如下几种时钟源HCLK3,PLL1Q,PLL2R和PER_CK:

 

我们这里直接使用HCLK3,配置STM32H7的主频为400MHz的时候,HCLK3输出的200MHz,这个速度是FMC支持的最高时钟,正好用于这里:

 

48.3.3 时序配置(重要)

这里要补充两个重要的知识点,74HC574的CP端接收到上升沿触发到Qn输出的时间参数:

 

 

通过时序图和对应的参数要了解到以下几点:

  •   tpd传输延迟在这里等效于tPHL和tPLH
  •   V7开发板的74HC574有三片是3.3V供电,另外一片是5V供电。参数表格里面没有给3.3V供电时的参数,也没有最小值。

 

了解了74HC574,再来看SN74HC02:

 

 

通过时序图和对应的参数要了解到以下几点:

  •   tpd传输延迟在这里等效于tPHL和tPLH
  •   tt过渡时间等效于tr上升沿时间和tf下降沿时间。
  •   V7开发板的74HC574有两片是3.3V供电,另外两片是5V供电。参数表格里面没有给3.3V和5V供电时的参数,也没有最小值。

                                                   

对应74HC574和74HC02的时序参数有个了解后,再来看本章2.3小节末尾的问题:

 

当写使能信号NWE出现下降沿后,74H02或非门就会输出一个上升沿,然后触发74HC574做锁存。此时我们要考虑到一个重要的知识点,就是使用的数字逻辑芯片有个传输延迟问题,也就是要我们要保证74HC02的tpd传输延迟时间 + 74HC02的tr传输延迟时间 + 74HC574的tpd传输延迟时间的这段时间内,数据总线上要有数据,所以保证DATAST数据建立时间够大就行。实际测试FMC频率在200MHz的情况下,2-3个FMC时钟周期就已经可以正常使用。

有了这些认识后,再来看FMC的时序配置就比较好理解了:

1.    /*
2.    ******************************************************************************************************
3.    *    函 数 名: HC574_ConfigFMC
4.    *    功能说明: 配置FMC并口访问时序
5.    *    形    参:  无
6.    *    返 回 值: 无
7.    ******************************************************************************************************
8.    */
9.    static void HC574_ConfigFMC(void)
10.    {
11.        SRAM_HandleTypeDef hsram = {0};
12.        FMC_NORSRAM_TimingTypeDef SRAM_Timing = {0};
13.            
14.        hsram.Instance  = FMC_NORSRAM_DEVICE;
15.        hsram.Extended  = FMC_NORSRAM_EXTENDED_DEVICE;
16.    
17.        /* FMC使用的HCLK3,主频200MHz,1个FMC时钟周期就是5ns */
18.        /* SRAM 总线时序配置 4-1-2-1-2-2 不稳定,5-2-2-1-2-2 稳定 */  
19.        SRAM_Timing.AddressSetupTime   = 5;  /* 5*5ns=25ns,地址建立时间,范围0 -15个FMC时钟周期个数 */
20.        SRAM_Timing.AddressHoldTime    = 2;  /* 地址保持时间,配置为模式A时,用不到此参数 范围1 -15个时
21.                                                  钟周期个数 */
22.        SRAM_Timing.DataSetupTime          = 2;  /* 2*5ns=10ns,数据保持时间,范围1 -255个时钟周期个数 */
23.        SRAM_Timing.BusTurnAroundDuration  = 1;  /* 此配置用不到这个参数 */
24.        SRAM_Timing.CLKDivision            = 2;  /* 此配置用不到这个参数 */
25.        SRAM_Timing.DataLatency            = 2;  /* 此配置用不到这个参数 */
26.        SRAM_Timing.AccessMode             = FMC_ACCESS_MODE_A; /* 配置为模式A */
27.    
28.        hsram.Init.NSBank             = FMC_NORSRAM_BANK1;   /* 使用的BANK1,即使用的片选FMC_NE1 */
29.        hsram.Init.DataAddressMux     = FMC_DATA_ADDRESS_MUX_DISABLE;   /* 禁止地址数据复用 */
30.        hsram.Init.MemoryType         = FMC_MEMORY_TYPE_SRAM;           /* 存储器类型SRAM */
31.        hsram.Init.MemoryDataWidth    = FMC_NORSRAM_MEM_BUS_WIDTH_32;    /* 32位总线宽度 */
32.        hsram.Init.BurstAccessMode    = FMC_BURST_ACCESS_MODE_DISABLE;  /* 关闭突发模式 */
33.        hsram.Init.WaitSignalPolarity = FMC_WAIT_SIGNAL_POLARITY_LOW;   /* 用于设置等待信号的极性,关闭突
34.                                                                            发模式,此参数无效 */
35.        hsram.Init.WaitSignalActive   = FMC_WAIT_TIMING_BEFORE_WS;      /* 关闭突发模式,此参数无效 */
36.        hsram.Init.WriteOperation     = FMC_WRITE_OPERATION_ENABLE;     /* 用于使能或者禁止写保护 */
37.        hsram.Init.WaitSignal         = FMC_WAIT_SIGNAL_DISABLE;        /* 关闭突发模式,此参数无效 */
38.        hsram.Init.ExtendedMode       = FMC_EXTENDED_MODE_DISABLE;      /* 禁止扩展模式 */
39.        hsram.Init.AsynchronousWait   = FMC_ASYNCHRONOUS_WAIT_DISABLE;  /* 用于异步传输期间,使能或者禁止
40.                                                                            等待信号,这里选择关闭 */
41.        hsram.Init.WriteBurst         = FMC_WRITE_BURST_DISABLE;        /* 禁止写突发 */
42.        hsram.Init.ContinuousClock    = FMC_CONTINUOUS_CLOCK_SYNC_ONLY; /* 仅同步模式才做时钟输出 */
43.        hsram.Init.WriteFifo          = FMC_WRITE_FIFO_ENABLE;           /* 使能写FIFO */
44.    
45.        /* 初始化SRAM控制器 */
46.        if (HAL_SRAM_Init(&hsram, &SRAM_Timing, &SRAM_Timing) != HAL_OK)
47.        {
48.            /* 初始化错误 */
49.            Error_Handler(__FILE__, __LINE__);
50.        }
51.    }

 

这里把几个关键的地方阐释下:

  •   第11 - 12行,对作为局部变量的HAL库结构体做初始化,防止不确定值配置时出问题。
  •   第19行,地址建立时间,对于FMC的IO扩展来说,这个地方取值0都可以,因为主要还是ADDST数据建立时间起作用。但是考虑到扩展IO外接了多个控制设备,这里取值5个FMC时钟周期,大家可以根据实际情况做减小出来。
  •   第20行,地址保持时间,对于FMC模式A来说,此参数用不到。
  •   第22行,数据建立时间,实际测试2个FMC时钟周期就可以正常使用,大家可以根据情况加大此数值。
  •   第23 – 25行,当前配置用不到这三个参数。
  •   第28行,使用的BANK1,即使用的片选FMC_NE1。
  •   第31行,由于是扩展的32路IO,所以这里要配置为32位带宽。

48.3.4 MPU配置

实际测试发现,使能FMC_NE1所管理的存储区的Cache功能后,会出现扩展IO的NE片选和NWE信号输出2次的问题。经过各种Cache方式配置、FMC带宽配置、操作FMC时的数据位宽设置,发现禁止了Cache功能就正常了,也就是说,设置FMC_NE1所管理的存储区MPU属性为Device或者Strongly Ordered即可。

    /* 配置FMC扩展IO的MPU属性为Device或者Strongly Ordered */
    MPU_InitStruct.Enable           = MPU_REGION_ENABLE;
    MPU_InitStruct.BaseAddress      = 0x60000000;
    MPU_InitStruct.Size             = ARM_MPU_REGION_SIZE_64KB;    
    MPU_InitStruct.AccessPermission = MPU_REGION_FULL_ACCESS;
    MPU_InitStruct.IsBufferable     = MPU_ACCESS_BUFFERABLE;
    MPU_InitStruct.IsCacheable      = MPU_ACCESS_NOT_CACHEABLE;
    MPU_InitStruct.IsShareable      = MPU_ACCESS_NOT_SHAREABLE;
    MPU_InitStruct.Number           = MPU_REGION_NUMBER1;
    MPU_InitStruct.TypeExtField     = MPU_TEX_LEVEL0;
    MPU_InitStruct.SubRegionDisable = 0x00;
    MPU_InitStruct.DisableExec      = MPU_INSTRUCTION_ACCESS_ENABLE;
    
    HAL_MPU_ConfigRegion(&MPU_InitStruct);

 

MPU配置中直接从FMC_NE1的首地址开始配置,设置了64KB空间的属性。将FMC_NE1通过译码器所管理的所有设备地址全部设置为此配置:

 

48.3.5 操作数据位宽注意事项

在bsp_fmc_io.c文件开头有个宏定义#define  HC574_PORT  *(uint32_t *)0x60001000。特别注意,这里是要操作地址0x60001000上的32位数据空间,即做了一个强制转换uint32_t *,要跟FMC配置时设置的位宽一致。这样做的原因,在第47章的2.6小节有说明。

48.4 FMC扩展IO板级支持包(bsp_fmc_io.c)

驱动文件bsp_fmc_io.c提供了如下几个函数供用户调用:

  •   bsp_InitExtIO
  •   HC574_SetPin
  •   HC574_TogglePin
  •   HC574_GetPin

48.4.1 函数bsp_InitExtIO

函数原型:

/*
*********************************************************************************************************
*    函 数 名: bsp_InitExtIO
*    功能说明: 配置扩展IO相关的GPIO. 上电只能执行一次。
*    形    参: 无
*    返 回 值: 无
*********************************************************************************************************
*/
void bsp_InitExtIO(void)
{
    HC574_ConfigGPIO();
    HC574_ConfigFMC();
    
    /* 将开发板一些片选,LED口设置为高 */
    g_HC574 = (NRF24L01_CE | VS1053_XDCS | LED1 | LED2 | LED3 | LED4);
    HC574_PORT = g_HC574;    /* 写硬件端口,更改IO状态 */
}

 

函数描述:

此函数用于初始化FMC扩展IO所用到的GPIO和FMC的参数配置。

使用举例:

作为初始化函数,直接在在bsp.c文件的bsp_Init函数里面调用即可。

48.4.2 函数HC574_SetPin

函数原型:

/*
*********************************************************************************************************
*    函 数 名: HC574_SetPin
*    功能说明: 设置74HC574端口值
*    形    参: _pin : 管脚号, 0-31; 只能选1个,不能多选
*              _value : 设定的值,0或1
*    返 回 值: 无
*********************************************************************************************************
*/
void HC574_SetPin(uint32_t _pin, uint8_t _value)
{
    if (_value == 0)
    {
        g_HC574 &= (~_pin);
    }
    else
    {
        g_HC574 |= _pin;
    }
    HC574_PORT = g_HC574;
}

 

函数描述:

此函数用于设置扩展IO的输出状态。调用此函数前,要保证调用了函数bsp_InitExtIO进行了初始化。

函数参数:

  •   第1个参数是扩展IO的引脚,支持的形参如下,每次仅支持调用下面1个,不支持多个IO一起操作。
#define GPIO_PIN_0                 ((uint16_t)0x0001)  /* Pin 0 selected */
#define GPIO_PIN_1                 ((uint16_t)0x0002)  /* Pin 1 selected */
#define GPIO_PIN_2                 ((uint16_t)0x0004)  /* Pin 2 selected */
#define GPIO_PIN_3                 ((uint16_t)0x0008)  /* Pin 3 selected */
#define GPIO_PIN_4                 ((uint16_t)0x0010)  /* Pin 4 selected */
#define GPIO_PIN_5                 ((uint16_t)0x0020)  /* Pin 5 selected */
#define GPIO_PIN_6                 ((uint16_t)0x0040)  /* Pin 6 selected */
#define GPIO_PIN_7                 ((uint16_t)0x0080)  /* Pin 7 selected */
#define GPIO_PIN_8                 ((uint16_t)0x0100)  /* Pin 8 selected */
#define GPIO_PIN_9                 ((uint16_t)0x0200)  /* Pin 9 selected */
#define GPIO_PIN_10                ((uint16_t)0x0400)  /* Pin 10 selected */
#define GPIO_PIN_11                ((uint16_t)0x0800)  /* Pin 11 selected */
#define GPIO_PIN_12                ((uint16_t)0x1000)  /* Pin 12 selected */
#define GPIO_PIN_13                ((uint16_t)0x2000)  /* Pin 13 selected */
#define GPIO_PIN_14                ((uint16_t)0x4000)  /* Pin 14 selected */
#define GPIO_PIN_15                ((uint16_t)0x8000)  /* Pin 15 selected */
#define GPIO_PIN_16                ((uint32_t)0x00010000)  /* Pin 16 selected */
#define GPIO_PIN_17                ((uint32_t)0x00020000)  /* Pin 17 selected */
#define GPIO_PIN_18                ((uint32_t)0x00040000)  /* Pin 18 selected */
#define GPIO_PIN_19                ((uint32_t)0x00080000)  /* Pin 19 selected */
#define GPIO_PIN_20                ((uint32_t)0x00100000)  /* Pin 20 selected */
#define GPIO_PIN_21                ((uint32_t)0x00200000)  /* Pin 21 selected */
#define GPIO_PIN_22                ((uint32_t)0x00400000)  /* Pin 22 selected */
#define GPIO_PIN_23                ((uint32_t)0x00800000)  /* Pin 23 selected */
#define GPIO_PIN_24                ((uint32_t)0x01000000)  /* Pin 24 selected */
#define GPIO_PIN_25                ((uint32_t)0x02000000)  /* Pin 25 selected */
#define GPIO_PIN_26                ((uint32_t)0x04000000)  /* Pin 26 selected */
#define GPIO_PIN_27                ((uint32_t)0x08000000)  /* Pin 27 selected */
#define GPIO_PIN_28                ((uint32_t)0x10000000)  /* Pin 28 selected */
#define GPIO_PIN_29                ((uint32_t)0x20000000)  /* Pin 29 selected */
#define GPIO_PIN_30                ((uint32_t)0x40000000)  /* Pin 30 selected */
#define GPIO_PIN_31                ((uint32_t)0x80000000)  /* Pin 31 selected */

 

  •   第2个参数用于设置指定扩展IO的高低电平,0表示输出低电平,1表示输出高电平。

使用举例:

比如设置扩展IO引脚GPIO_PIN_23为高电平:HC574_SetPin(GPIO_PIN_23, 1)。

48.4.3 函数HC574_TogglePin

函数原型:

/*
*********************************************************************************************************
*    函 数 名: HC574_TogglePin
*    功能说明: 饭庄74HC574端口值
*    形    参: _pin : 管脚号, 0-31; 只能选1个,不能多选
*    返 回 值: 无
*********************************************************************************************************
*/
void HC574_TogglePin(uint32_t _pin)
{
    if (g_HC574 & _pin)
    {
        g_HC574 &= (~_pin);
    }
    else
    {
        g_HC574 |= _pin;
    }
    HC574_PORT = g_HC574;
}

 

函数描述:

此函数用于FMC扩展IO的翻转。调用此函数前,要保证调用了函数bsp_InitExtIO进行了初始化。

函数参数:

  •   第1个参数是扩展IO的引脚,支持的形参如下,每次仅支持调用下面1个,不支持多个IO一起操作。
#define GPIO_PIN_0                 ((uint16_t)0x0001)  /* Pin 0 selected */
#define GPIO_PIN_1                 ((uint16_t)0x0002)  /* Pin 1 selected */
#define GPIO_PIN_2                 ((uint16_t)0x0004)  /* Pin 2 selected */
#define GPIO_PIN_3                 ((uint16_t)0x0008)  /* Pin 3 selected */
#define GPIO_PIN_4                 ((uint16_t)0x0010)  /* Pin 4 selected */
#define GPIO_PIN_5                 ((uint16_t)0x0020)  /* Pin 5 selected */
#define GPIO_PIN_6                 ((uint16_t)0x0040)  /* Pin 6 selected */
#define GPIO_PIN_7                 ((uint16_t)0x0080)  /* Pin 7 selected */
#define GPIO_PIN_8                 ((uint16_t)0x0100)  /* Pin 8 selected */
#define GPIO_PIN_9                 ((uint16_t)0x0200)  /* Pin 9 selected */
#define GPIO_PIN_10                ((uint16_t)0x0400)  /* Pin 10 selected */
#define GPIO_PIN_11                ((uint16_t)0x0800)  /* Pin 11 selected */
#define GPIO_PIN_12                ((uint16_t)0x1000)  /* Pin 12 selected */
#define GPIO_PIN_13                ((uint16_t)0x2000)  /* Pin 13 selected */
#define GPIO_PIN_14                ((uint16_t)0x4000)  /* Pin 14 selected */
#define GPIO_PIN_15                ((uint16_t)0x8000)  /* Pin 15 selected */
#define GPIO_PIN_16                ((uint32_t)0x00010000)  /* Pin 16 selected */
#define GPIO_PIN_17                ((uint32_t)0x00020000)  /* Pin 17 selected */
#define GPIO_PIN_18                ((uint32_t)0x00040000)  /* Pin 18 selected */
#define GPIO_PIN_19                ((uint32_t)0x00080000)  /* Pin 19 selected */
#define GPIO_PIN_20                ((uint32_t)0x00100000)  /* Pin 20 selected */
#define GPIO_PIN_21                ((uint32_t)0x00200000)  /* Pin 21 selected */
#define GPIO_PIN_22                ((uint32_t)0x00400000)  /* Pin 22 selected */
#define GPIO_PIN_23                ((uint32_t)0x00800000)  /* Pin 23 selected */
#define GPIO_PIN_24                ((uint32_t)0x01000000)  /* Pin 24 selected */
#define GPIO_PIN_25                ((uint32_t)0x02000000)  /* Pin 25 selected */
#define GPIO_PIN_26                ((uint32_t)0x04000000)  /* Pin 26 selected */
#define GPIO_PIN_27                ((uint32_t)0x08000000)  /* Pin 27 selected */
#define GPIO_PIN_28                ((uint32_t)0x10000000)  /* Pin 28 selected */
#define GPIO_PIN_29                ((uint32_t)0x20000000)  /* Pin 29 selected */
#define GPIO_PIN_30                ((uint32_t)0x40000000)  /* Pin 30 selected */
#define GPIO_PIN_31                ((uint32_t)0x80000000)  /* Pin 31 selected */

 

使用举例:

比如翻转扩展IO引脚GPIO_PIN_23为高电平:HC574_TogglePin(GPIO_PIN_23)。

48.4.4 函数HC574_GetPin

函数原型:

/*
*********************************************************************************************************
*    函 数 名: HC574_GetPin
*    功能说明: 判断指定的管脚输出是1还是0
*    形    参: _pin : 管脚号, 0-31; 只能选1个,不能多选
*    返 回 值: 0或1
*********************************************************************************************************
*/
uint8_t HC574_GetPin(uint32_t _pin)
{
    if (g_HC574 & _pin)
    {
        return 1;
    }
    else
    {
        return 0;
    }
}

 

函数描述:

此函数用于读取FMC扩展IO的状态。调用此函数前,要保证调用了函数bsp_InitExtIO进行了初始化。

函数参数:

  •   第1个参数是扩展IO的引脚,支持的形参如下,每次仅支持调用下面1个,不支持多个IO一起操作。
#define GPIO_PIN_0                 ((uint16_t)0x0001)  /* Pin 0 selected */
#define GPIO_PIN_1                 ((uint16_t)0x0002)  /* Pin 1 selected */
#define GPIO_PIN_2                 ((uint16_t)0x0004)  /* Pin 2 selected */
#define GPIO_PIN_3                 ((uint16_t)0x0008)  /* Pin 3 selected */
#define GPIO_PIN_4                 ((uint16_t)0x0010)  /* Pin 4 selected */
#define GPIO_PIN_5                 ((uint16_t)0x0020)  /* Pin 5 selected */
#define GPIO_PIN_6                 ((uint16_t)0x0040)  /* Pin 6 selected */
#define GPIO_PIN_7                 ((uint16_t)0x0080)  /* Pin 7 selected */
#define GPIO_PIN_8                 ((uint16_t)0x0100)  /* Pin 8 selected */
#define GPIO_PIN_9                 ((uint16_t)0x0200)  /* Pin 9 selected */
#define GPIO_PIN_10                ((uint16_t)0x0400)  /* Pin 10 selected */
#define GPIO_PIN_11                ((uint16_t)0x0800)  /* Pin 11 selected */
#define GPIO_PIN_12                ((uint16_t)0x1000)  /* Pin 12 selected */
#define GPIO_PIN_13                ((uint16_t)0x2000)  /* Pin 13 selected */
#define GPIO_PIN_14                ((uint16_t)0x4000)  /* Pin 14 selected */
#define GPIO_PIN_15                ((uint16_t)0x8000)  /* Pin 15 selected */
#define GPIO_PIN_16                ((uint32_t)0x00010000)  /* Pin 16 selected */
#define GPIO_PIN_17                ((uint32_t)0x00020000)  /* Pin 17 selected */
#define GPIO_PIN_18                ((uint32_t)0x00040000)  /* Pin 18 selected */
#define GPIO_PIN_19                ((uint32_t)0x00080000)  /* Pin 19 selected */
#define GPIO_PIN_20                ((uint32_t)0x00100000)  /* Pin 20 selected */
#define GPIO_PIN_21                ((uint32_t)0x00200000)  /* Pin 21 selected */
#define GPIO_PIN_22                ((uint32_t)0x00400000)  /* Pin 22 selected */
#define GPIO_PIN_23                ((uint32_t)0x00800000)  /* Pin 23 selected */
#define GPIO_PIN_24                ((uint32_t)0x01000000)  /* Pin 24 selected */
#define GPIO_PIN_25                ((uint32_t)0x02000000)  /* Pin 25 selected */
#define GPIO_PIN_26                ((uint32_t)0x04000000)  /* Pin 26 selected */
#define GPIO_PIN_27                ((uint32_t)0x08000000)  /* Pin 27 selected */
#define GPIO_PIN_28                ((uint32_t)0x10000000)  /* Pin 28 selected */
#define GPIO_PIN_29                ((uint32_t)0x20000000)  /* Pin 29 selected */
#define GPIO_PIN_30                ((uint32_t)0x40000000)  /* Pin 30 selected */
#define GPIO_PIN_31                ((uint32_t)0x80000000)  /* Pin 31 selected */

 

  •   返回值,返回0表示低电平,返回1表示高电平。

使用举例:

比如获取扩展IO的GPIO_PIN_23高低电平状态,调用函数HC574_GetPin(GPIO_PIN_23)获取即可。

48.5 FMC扩展IO驱动移植和使用

扩展IO的移植比较方便:

  •   第1步:复制bsp_fmc_io.c和bsp_fmc_io.h到自己的工程目录,并添加到工程里面。
  •   第2步:这几个驱动文件主要用到HAL库的GPIO和FMC驱动文件,简单省事些可以添加所有HAL库.C源文件进来。
  •   第3步,应用方法看本章节配套例子即可,另外就是根据自己的需要做配置修改。

48.6 实验例程设计框架

通过程序设计框架,让大家先对配套例程有一个全面的认识,然后再理解细节,本次实验例程的设计框架如下:

 

  第1阶段,上电启动阶段:

  • 这部分在第14章进行了详细说明。

  第2阶段,进入main函数:

  •  第1步,硬件初始化,主要是MPU,Cache,HAL库,系统时钟,滴答定时器,LED和串口。
  •  第2步,按键应用程序设计部分。定时器中断服务程序里面实现翻转FMC扩展引脚20和23。

48.7 实验例程说明(MDK)

配套例子:

V7-027-FMC总线扩展32路高速IO

实验目的:

  1. 学习FMC总线扩展32路高速IO。

实验内容:

  1. 系统上电后驱动了1个软件定时器,每100ms翻转一次LED2。
  2. 启动1个TIM6周期性中断,频率10KHz,在中断服务程序里面翻转FMC扩展引脚20和23。

实验操作:

  1. K1按键按下,开启TIM6的周期性中断。
  2. K2按键按下,关闭TIM6的周期性中断。

FMC扩展引脚20和23的位置:

 

上电后串口打印的信息:

波特率 115200,数据位 8,奇偶校验位无,停止位 1

 

程序设计:

  系统栈大小分配:

 

  RAM空间用的DTCM:

 

  硬件外设初始化

硬件外设的初始化是在 bsp.c 文件实现:

/*
*********************************************************************************************************
*    函 数 名: bsp_Init
*    功能说明: 初始化所有的硬件设备。该函数配置CPU寄存器和外设的寄存器并初始化一些全局变量。只需要调用一次
*    形    参:无
*    返 回 值: 无
*********************************************************************************************************
*/
void bsp_Init(void)
{
    /* 配置MPU */
    MPU_Config();
    
    /* 使能L1 Cache */
    CPU_CACHE_Enable();

    /* 
       STM32H7xx HAL 库初始化,此时系统用的还是H7自带的64MHz,HSI时钟:
       - 调用函数HAL_InitTick,初始化滴答时钟中断1ms。
       - 设置NVIV优先级分组为4。
     */
    HAL_Init();

    /* 
       配置系统时钟到400MHz
       - 切换使用HSE。
       - 此函数会更新全局变量SystemCoreClock,并重新配置HAL_InitTick。
    */
    SystemClock_Config();

    /* 
       Event Recorder:
       - 可用于代码执行时间测量,MDK5.25及其以上版本才支持,IAR不支持。
       - 默认不开启,如果要使能此选项,务必看V7开发板用户手册第xx章
    */    
#if Enable_EventRecorder == 1  
    /* 初始化EventRecorder并开启 */
    EventRecorderInitialize(EventRecordAll, 1U);
    EventRecorderStart();
#endif
    
    bsp_InitKey();        /* 按键初始化,要放在滴答定时器之前,因为按钮检测是通过滴答定时器扫描 */
    bsp_InitTimer();      /* 初始化滴答定时器 */
    bsp_InitUart();    /* 初始化串口 */
    bsp_InitExtIO();    /* 初始化FMC总线74HC574扩展IO. 必须在 bsp_InitLed()前执行 */    
    bsp_InitLed();        /* 初始化LED */    
}

 

  MPU配置和Cache配置:

数据Cache和指令Cache都开启。配置了AXI SRAM区(本例子未用到AXI SRAM)和FMC的扩展IO区。

/*
*********************************************************************************************************
*    函 数 名: MPU_Config
*    功能说明: 配置MPU
*    形    参: 无
*    返 回 值: 无
*********************************************************************************************************
*/
static void MPU_Config( void )
{
    MPU_Region_InitTypeDef MPU_InitStruct;

    /* 禁止 MPU */
    HAL_MPU_Disable();

    /* 配置AXI SRAM的MPU属性为Write back, Read allocate,Write allocate */
    MPU_InitStruct.Enable           = MPU_REGION_ENABLE;
    MPU_InitStruct.BaseAddress      = 0x24000000;
    MPU_InitStruct.Size             = MPU_REGION_SIZE_512KB;
    MPU_InitStruct.AccessPermission = MPU_REGION_FULL_ACCESS;
    MPU_InitStruct.IsBufferable     = MPU_ACCESS_BUFFERABLE;
    MPU_InitStruct.IsCacheable      = MPU_ACCESS_CACHEABLE;
    MPU_InitStruct.IsShareable      = MPU_ACCESS_NOT_SHAREABLE;
    MPU_InitStruct.Number           = MPU_REGION_NUMBER0;
    MPU_InitStruct.TypeExtField     = MPU_TEX_LEVEL1;
    MPU_InitStruct.SubRegionDisable = 0x00;
    MPU_InitStruct.DisableExec      = MPU_INSTRUCTION_ACCESS_ENABLE;

    HAL_MPU_ConfigRegion(&MPU_InitStruct);
    
    
    /* 配置FMC扩展IO的MPU属性为Device或者Strongly Ordered */
    MPU_InitStruct.Enable           = MPU_REGION_ENABLE;
    MPU_InitStruct.BaseAddress      = 0x60000000;
    MPU_InitStruct.Size             = ARM_MPU_REGION_SIZE_64KB;    
    MPU_InitStruct.AccessPermission = MPU_REGION_FULL_ACCESS;
    MPU_InitStruct.IsBufferable     = MPU_ACCESS_BUFFERABLE;
    MPU_InitStruct.IsCacheable      = MPU_ACCESS_NOT_CACHEABLE;    
    MPU_InitStruct.IsShareable      = MPU_ACCESS_NOT_SHAREABLE;
    MPU_InitStruct.Number           = MPU_REGION_NUMBER1;
    MPU_InitStruct.TypeExtField     = MPU_TEX_LEVEL0;
    MPU_InitStruct.SubRegionDisable = 0x00;
    MPU_InitStruct.DisableExec      = MPU_INSTRUCTION_ACCESS_ENABLE;
    
    HAL_MPU_ConfigRegion(&MPU_InitStruct);

    /*使能 MPU */
    HAL_MPU_Enable(MPU_PRIVILEGED_DEFAULT);
}

/*
*********************************************************************************************************
*    函 数 名: CPU_CACHE_Enable
*    功能说明: 使能L1 Cache
*    形    参: 无
*    返 回 值: 无
*********************************************************************************************************
*/
static void CPU_CACHE_Enable(void)
{
    /* 使能 I-Cache */
    SCB_EnableICache();

    /* 使能 D-Cache */
    SCB_EnableDCache();
}

 

  主功能:

主程序实现如下操作:

  •   K1按键按下,开启TIM6的周期性中断。
  •  K2按键按下,关闭TIM6的周期性中断。
/*
*********************************************************************************************************
*    函 数 名: main
*    功能说明: c程序入口
*    形    参: 无
*    返 回 值: 错误代码(无需处理)
*********************************************************************************************************
*/
int main(void)
{
    uint8_t ucKeyCode;        /* 按键代码 */
    

    bsp_Init();        /* 硬件初始化 */
    
    PrintfLogo();    /* 打印例程名称和版本等信息 */
    PrintfHelp();    /* 打印操作提示 */

    bsp_StartAutoTimer(0, 100);    /* 启动1个100ms的自动重装的定时器 */
    
    bsp_SetTIMforInt(TIM6, 10000, 2, 0);    /* 设置为10KHz频率定时器中断*/    
    
    /* 进入主程序循环体 */
    while (1)
    {
        bsp_Idle();        /* 这个函数在bsp.c文件。用户可以修改这个函数实现CPU休眠和喂狗 */

        /* 判断定时器超时时间 */
        if (bsp_CheckTimer(0))    
        {
            /* 每隔100ms 进来一次 */  
            bsp_LedToggle(2);
        }

        /* 按键滤波和检测由后台systick中断服务程序实现,我们只需要调用bsp_GetKey读取键值即可。 */
        ucKeyCode = bsp_GetKey();    /* 读取键值, 无键按下时返回 KEY_NONE = 0 */
        if (ucKeyCode != KEY_NONE)
        {
            switch (ucKeyCode)
            {
                case KEY_DOWN_K1:            /* K1键按下,开启TIM6的周期性中断*/
                    TIM6->DIER |= TIM_IT_UPDATE;
                    break;

                case KEY_DOWN_K2:            /* K2键按下,关闭TIM6的周期性中断*/
                    TIM6->DIER &= ~TIM_IT_UPDATE;
                    break;

                default:
                    /* 其它的键值不处理 */
                    break;
            }
        }
    }
}

 

定时器6中断服务程序:

/*
*********************************************************************************************************
*    函 数 名: TIM6_DAC_IRQHandler
*    功能说明: TIM6定时中断服务程序
*    返 回 值: 无
*********************************************************************************************************
*/
void TIM6_DAC_IRQHandler(void)
{
    if((TIM6->SR & TIM_FLAG_UPDATE) != RESET)
    {
        /* 清除更新标志 */
        TIM6->SR = ~ TIM_FLAG_UPDATE;
        
        /* 翻转FMC扩展引脚20和23脚 */
        HC574_TogglePin(GPIO_PIN_23);
        HC574_TogglePin(GPIO_PIN_20);
    }
}

 

48.8 实验例程说明(IAR)

配套例子:

V7-027-FMC总线扩展32路高速IO

实验目的:

  1. 学习FMC总线扩展32路高速IO。

实验内容:

  1. 系统上电后驱动了1个软件定时器,每100ms翻转一次LED2。
  2. 启动1个TIM6周期性中断,频率10KHz,在中断服务程序里面翻转FMC扩展引脚20和23。

实验操作:

  1. K1按键按下,开启TIM6的周期性中断。
  2. K2按键按下,关闭TIM6的周期性中断。

FMC扩展引脚20和23的位置:

 

上电后串口打印的信息:

波特率 115200,数据位 8,奇偶校验位无,停止位 1

 

程序设计:

  系统栈大小分配:

 

  RAM空间用的DTCM:

 

  硬件外设初始化

硬件外设的初始化是在 bsp.c 文件实现:

/*
*********************************************************************************************************
*    函 数 名: bsp_Init
*    功能说明: 初始化所有的硬件设备。该函数配置CPU寄存器和外设的寄存器并初始化一些全局变量。只需要调用一次
*    形    参:无
*    返 回 值: 无
*********************************************************************************************************
*/
void bsp_Init(void)
{
    /* 配置MPU */
    MPU_Config();
    
    /* 使能L1 Cache */
    CPU_CACHE_Enable();

    /* 
       STM32H7xx HAL 库初始化,此时系统用的还是H7自带的64MHz,HSI时钟:
       - 调用函数HAL_InitTick,初始化滴答时钟中断1ms。
       - 设置NVIV优先级分组为4。
     */
    HAL_Init();

    /* 
       配置系统时钟到400MHz
       - 切换使用HSE。
       - 此函数会更新全局变量SystemCoreClock,并重新配置HAL_InitTick。
    */
    SystemClock_Config();

    /* 
       Event Recorder:
       - 可用于代码执行时间测量,MDK5.25及其以上版本才支持,IAR不支持。
       - 默认不开启,如果要使能此选项,务必看V7开发板用户手册第xx章
    */    
#if Enable_EventRecorder == 1  
    /* 初始化EventRecorder并开启 */
    EventRecorderInitialize(EventRecordAll, 1U);
    EventRecorderStart();
#endif
    
    bsp_InitKey();        /* 按键初始化,要放在滴答定时器之前,因为按钮检测是通过滴答定时器扫描 */
    bsp_InitTimer();      /* 初始化滴答定时器 */
    bsp_InitUart();    /* 初始化串口 */
    bsp_InitExtIO();    /* 初始化FMC总线74HC574扩展IO. 必须在 bsp_InitLed()前执行 */    
    bsp_InitLed();        /* 初始化LED */    
}

 

  MPU配置和Cache配置:

数据Cache和指令Cache都开启。配置了AXI SRAM区(本例子未用到AXI SRAM)和FMC的扩展IO区。

/*
*********************************************************************************************************
*    函 数 名: MPU_Config
*    功能说明: 配置MPU
*    形    参: 无
*    返 回 值: 无
*********************************************************************************************************
*/
static void MPU_Config( void )
{
    MPU_Region_InitTypeDef MPU_InitStruct;

    /* 禁止 MPU */
    HAL_MPU_Disable();

    /* 配置AXI SRAM的MPU属性为Write back, Read allocate,Write allocate */
    MPU_InitStruct.Enable           = MPU_REGION_ENABLE;
    MPU_InitStruct.BaseAddress      = 0x24000000;
    MPU_InitStruct.Size             = MPU_REGION_SIZE_512KB;
    MPU_InitStruct.AccessPermission = MPU_REGION_FULL_ACCESS;
    MPU_InitStruct.IsBufferable     = MPU_ACCESS_BUFFERABLE;
    MPU_InitStruct.IsCacheable      = MPU_ACCESS_CACHEABLE;
    MPU_InitStruct.IsShareable      = MPU_ACCESS_NOT_SHAREABLE;
    MPU_InitStruct.Number           = MPU_REGION_NUMBER0;
    MPU_InitStruct.TypeExtField     = MPU_TEX_LEVEL1;
    MPU_InitStruct.SubRegionDisable = 0x00;
    MPU_InitStruct.DisableExec      = MPU_INSTRUCTION_ACCESS_ENABLE;

    HAL_MPU_ConfigRegion(&MPU_InitStruct);
    
    
    /* 配置FMC扩展IO的MPU属性为Device或者Strongly Ordered */
    MPU_InitStruct.Enable           = MPU_REGION_ENABLE;
    MPU_InitStruct.BaseAddress      = 0x60000000;
    MPU_InitStruct.Size             = ARM_MPU_REGION_SIZE_64KB;    
    MPU_InitStruct.AccessPermission = MPU_REGION_FULL_ACCESS;
    MPU_InitStruct.IsBufferable     = MPU_ACCESS_BUFFERABLE;
    MPU_InitStruct.IsCacheable      = MPU_ACCESS_NOT_CACHEABLE;    
    MPU_InitStruct.IsShareable      = MPU_ACCESS_NOT_SHAREABLE;
    MPU_InitStruct.Number           = MPU_REGION_NUMBER1;
    MPU_InitStruct.TypeExtField     = MPU_TEX_LEVEL0;
    MPU_InitStruct.SubRegionDisable = 0x00;
    MPU_InitStruct.DisableExec      = MPU_INSTRUCTION_ACCESS_ENABLE;
    
    HAL_MPU_ConfigRegion(&MPU_InitStruct);

    /*使能 MPU */
    HAL_MPU_Enable(MPU_PRIVILEGED_DEFAULT);
}

/*
*********************************************************************************************************
*    函 数 名: CPU_CACHE_Enable
*    功能说明: 使能L1 Cache
*    形    参: 无
*    返 回 值: 无
*********************************************************************************************************
*/
static void CPU_CACHE_Enable(void)
{
    /* 使能 I-Cache */
    SCB_EnableICache();

    /* 使能 D-Cache */
    SCB_EnableDCache();
}

 

 主功能:

主程序实现如下操作:

  •  K1按键按下,开启TIM6的周期性中断。
  •  K2按键按下,关闭TIM6的周期性中断。
/*
*********************************************************************************************************
*    函 数 名: main
*    功能说明: c程序入口
*    形    参: 无
*    返 回 值: 错误代码(无需处理)
*********************************************************************************************************
*/
int main(void)
{
    uint8_t ucKeyCode;        /* 按键代码 */
    

    bsp_Init();        /* 硬件初始化 */
    
    PrintfLogo();    /* 打印例程名称和版本等信息 */
    PrintfHelp();    /* 打印操作提示 */

    bsp_StartAutoTimer(0, 100);    /* 启动1个100ms的自动重装的定时器 */
    
    bsp_SetTIMforInt(TIM6, 10000, 2, 0);    /* 设置为10KHz频率定时器中断*/    
    
    /* 进入主程序循环体 */
    while (1)
    {
        bsp_Idle();        /* 这个函数在bsp.c文件。用户可以修改这个函数实现CPU休眠和喂狗 */

        /* 判断定时器超时时间 */
        if (bsp_CheckTimer(0))    
        {
            /* 每隔100ms 进来一次 */  
            bsp_LedToggle(2);
        }

        /* 按键滤波和检测由后台systick中断服务程序实现,我们只需要调用bsp_GetKey读取键值即可。 */
        ucKeyCode = bsp_GetKey();    /* 读取键值, 无键按下时返回 KEY_NONE = 0 */
        if (ucKeyCode != KEY_NONE)
        {
            switch (ucKeyCode)
            {
                case KEY_DOWN_K1:            /* K1键按下,开启TIM6的周期性中断*/
                    TIM6->DIER |= TIM_IT_UPDATE;
                    break;

                case KEY_DOWN_K2:            /* K2键按下,关闭TIM6的周期性中断*/
                    TIM6->DIER &= ~TIM_IT_UPDATE;
                    break;

                default:
                    /* 其它的键值不处理 */
                    break;
            }
        }
    }
}

 

定时器6中断服务程序:

/*
*********************************************************************************************************
*    函 数 名: TIM6_DAC_IRQHandler
*    功能说明: TIM6定时中断服务程序
*    返 回 值: 无
*********************************************************************************************************
*/
void TIM6_DAC_IRQHandler(void)
{
    if((TIM6->SR & TIM_FLAG_UPDATE) != RESET)
    {
        /* 清除更新标志 */
        TIM6->SR = ~ TIM_FLAG_UPDATE;
        
        /* 翻转FMC扩展引脚20和23脚 */
        HC574_TogglePin(GPIO_PIN_23);
        HC574_TogglePin(GPIO_PIN_20);
    }
}

 

48.9 总结

本章节就为大家讲解这么多,由于FMC总线可以扩展出32路高速IO且使用简单,所以实际项目中也比较有实用价值,望初学者熟练掌握。

 

posted @ 2020-02-05 13:08  硬汉嵌入式  阅读(2399)  评论(0编辑  收藏  举报