【STM32H7教程】第26章 STM32H7的TCM,SRAM等五块内存的超方便使用方式
完整教程下载地址:http://www.armbbs.cn/forum.php?mod=viewthread&tid=86980
第26章 STM32H7的TCM,SRAM等五块内存的超方便使用方式
本章教程为大家分享一种快捷的DTCM,SRAM1,SRAM2,SRAM3和SRAM4的使用方式。MDK和IAR均支持这种方式。
26.1 初学者重要提示
26.2 MDK分散加载方式管理多块内存区方法
26.3 MDK分散加载文件解读
26.4 IAR的ICF文件设置
26.5 实验例程说明(MDK)
26.6 实验例程说明(IAR)
26.7 总结
26.1 初学者重要提示
- 学习本章节前,务必优先学习第25章,了解TCM,SRAM等五块内存区的基础知识,比较重要。
- 本章的管理方式比较容易实现,仅需添加一个分散加载文件即可,对应的分散加载内容也比较好理解。
26.2 MDK分散加载方式管理多块内存区方法
默认情况下,我们都是通过MDK的option选项设置Flash和RAM大小:
这种情况下,所有管理工作都是编译来处理的。针对这个配置,在路径\Project\MDK-ARM(uV5)\Objects(本教程配套例子的路径)里面会自动生成一个后缀为sct的文件output.sct。文件名由下面这个选项决定的:
output.sct文件生成的内容如下:
; ************************************************************* ; *** Scatter-Loading Description File generated by uVision *** ; ************************************************************* LR_IROM1 0x08000000 0x00200000 { ; load region size_region ER_IROM1 0x08000000 0x00200000 { ; load address = execution address *.o (RESET, +First) *(InRoot$$Sections) .ANY (+RO) .ANY (+XO) } RW_IRAM1 0x20000000 0x00020000 { ; RW data .ANY (+RW +ZI) } }
不方便用户将变量定义到指定的CCM 或者SDRAM中。而使用__attribute__指定具体地址又不方便管理。
针对这种情况,使用一个脚本文件即可解决,脚本定义如下:
LR_IROM1 0x08000000 0x00200000 { ; load region size_region ER_IROM1 0x08000000 0x00200000 { ; load address = execution address *.o (RESET, +First) *(InRoot$$Sections) .ANY (+RO) } ; RW data - 128KB DTCM RW_IRAM1 0x20000000 0x00020000 { .ANY (+RW +ZI) } ; RW data - 512KB AXI SRAM RW_IRAM2 0x24000000 0x00080000 { *(.RAM_D1) } ; RW data - 128KB SRAM1(0x30000000) + 128KB SRAM2(0x3002 0000) + 32KB SRAM3(0x30040000) RW_IRAM3 0x30000000 0x00048000 { *(.RAM_D2) } ; RW data - 64KB SRAM4(0x38000000) RW_IRAM4 0x38000000 0x00010000 { *(.RAM_D3) } }
同时配置option的链接选项使用此分散加载文件:
使用方法很简单,依然是使用__attribute__,但是不指定具体地址了,指定RAM区,方法如下,仅需加个前缀即可:
/* 定义在512KB AXI SRAM里面的变量 */ __attribute__((section (".RAM_D1"))) uint32_t AXISRAMBuf[10]; __attribute__((section (".RAM_D1"))) uint16_t AXISRAMCount; /* 定义在128KB SRAM1(0x30000000) + 128KB SRAM2(0x30020000) + 32KB SRAM3(0x30040000)里面的变量 */ __attribute__((section (".RAM_D2"))) uint32_t D2SRAMBuf[10]; __attribute__((section (".RAM_D2"))) uint16_t D2SRAMount; /* 定义在64KB SRAM4(0x38000000)里面的变量 */ __attribute__((section (".RAM_D3"))) uint32_t D3SRAMBuf[10]; __attribute__((section (".RAM_D3"))) uint16_t D3SRAMCount;
26.3 MDK分散加载文件解读
这里将分散加载文件的内容为大家做个解读,方便以后自己修改:
1. LR_IROM1 0x08000000 0x00200000 { ; load region size_region 2. ER_IROM1 0x08000000 0x00200000 { ; load address = execution address 3. *.o (RESET, +First) 4. *(InRoot$$Sections) 5. .ANY (+RO) 6. } 7. 8. ; RW data - 128KB DTCM 9. RW_IRAM1 0x20000000 0x00020000 { 10. .ANY (+RW +ZI) 11. } 12. 13. ; RW data - 512KB AXI SRAM 14. RW_IRAM2 0x24000000 0x00080000 { 15. *(.RAM_D1) 16. } 17. 18. ; RW data - 128KB SRAM1(0x30000000) + 128KB SRAM2(0x3002 0000) + 32KB SRAM3(0x30040000) 19. RW_IRAM3 0x30000000 0x00048000 { 20. *(.RAM_D2) 21. } 22. 23. ; RW data - 64KB SRAM4(0x38000000) 24. RW_IRAM4 0x38000000 0x00010000 { 25. *(.RAM_D3) 26. } 27. }
- 第1 – 2行,LR_IROM1是Load Region加载域,ER_IROM1是Execution Region执行域。首地址都是0x0800 0000,大小都是0x0020 0000,即STM32H7的Flash地址和对应大小。
加载域就是程序在Flash中的实际存储,而运行域是芯片上电后的运行状态,通过下面的框图可以有一个感性的认识:
通过上面的框图可以看出,RW区也是要存储到ROM/Flash里面的,在执行映像之前,必须将已初始化的 RW 数据从 ROM 中复制到 RAM 中的执行地址并创建ZI Section(初始化为0的变量区)。
- 第3行的*.o (RESET, +First)
在启动文件startup_stm32h743xx.s有个段名为RESET的代码段,主要存储了中断向量表。这里是将其存放在Flash的首地址。
- 第4行的*(InRoot$$Sections)
这里是将MDK的一些库文件全部放在根域,比如__main.o, _scatter*.o, _dc*.o。
- 第5行.ANY (+RO)
将目标文件中所有具有RO只读属性的数据放在这里,即ER_IROM1。
- 第9-11行,RW_IRAM1是执行域,配置的是DTCM,首地址0x2000 0000,大小128KB。
将目标文件中所有具有RW和ZI数据放在这里。
- 第14-16行,RW_IRAM2是执行域,配置的是AXI SRAM,首地址0x24000000,大小512KB。
给这个域专门配了一个名字 .RAM_D1。这样就可以通过__attribute__((section("name")))将其分配到这个RAM域。
- 第19-21行,RW_IRAM3是执行域,配置的是D2域的SRAM1,SRAM2和SRAM3,首地址0x30000000,共计大小288KB。给这个域专门配了一个名字 .RAM_D2。这样就可以通过__attribute__((section("name")))将其分配到这个RAM域。
- 第24-26行,RW_IRAM3是执行域,配置的是D3域的SRAM4,首地址0x38000000,共计大小64KB。给这个域专门配了一个名字 .RAM_D3。这样就可以通过__attribute__((section("name")))将其分配到这个RAM域。
26.4 IAR的ICF文件设置
IAR相比MDK的设置要简单一些,仅需在IAR的配置文件stm32h743xx_flash.icf中添加如下代码即可:
define region RAM_D1_region = mem:[from 0x24000000 to 0x24080000]; define region RAM_D2_region = mem:[from 0x30000000 to 0x30048000]; define region RAM_D3_region = mem:[from 0x38000000 to 0x38010000]; place in RAM_D1_region {section .RAM_D1}; place in RAM_D2_region {section .RAM_D2}; place in RAM_D3_region {section .RAM_D3};
用户的使用方法如下:
/* 定义在512KB AXI SRAM里面的变量 */ #pragma location = ".RAM_D1" uint32_t AXISRAMBuf[10]; #pragma location = ".RAM_D1" uint16_t AXISRAMCount; /* 定义在128KB SRAM1(0x30000000) + 128KB SRAM2(0x30020000) + 32KB SRAM3(0x30040000)里面的变量 */ #pragma location = ".RAM_D2" uint32_t D2SRAMBuf[10]; #pragma location = ".RAM_D2" uint16_t D2SRAMount; /* 定义在64KB SRAM4(0x38000000)里面的变量 */ #pragma location = ".RAM_D3" uint32_t D3SRAMBuf[10]; #pragma location = ".RAM_D3" uint16_t D3SRAMCount;
26.5 实验例程说明(MDK)
配套例子:
V7-005_TCM,SRAM等五块内存的超方便使用方式
实验目的:
- 学习TCM,SRAM等五块内存的超方便使用方式。
实验内容:
- 启动自动重装软件定时器0,每100ms翻转一次LED2。
实验操作:
- K1键按下,操作AXI SRAM。
- K2键按下,操作D2域的SRAM1,SRAM2和SRAM3。
- K3键按下,操作D3域的SRAM4。
上电后串口打印的信息:
波特率 115200,数据位 8,奇偶校验位无,停止位 1
程序设计:
系统栈大小分配:
RAM空间用的DTCM:
硬件外设初始化
硬件外设的初始化是在 bsp.c 文件实现:
/* ********************************************************************************************************* * 函 数 名: bsp_Init * 功能说明: 初始化所有的硬件设备。该函数配置CPU寄存器和外设的寄存器并初始化一些全局变量。只需要调用一次 * 形 参:无 * 返 回 值: 无 ********************************************************************************************************* */ void bsp_Init(void) { /* 配置MPU */ MPU_Config(); /* 使能L1 Cache */ CPU_CACHE_Enable(); /* STM32H7xx HAL 库初始化,此时系统用的还是H7自带的64MHz,HSI时钟: - 调用函数HAL_InitTick,初始化滴答时钟中断1ms。 - 设置NVIV优先级分组为4。 */ HAL_Init(); /* 配置系统时钟到400MHz - 切换使用HSE。 - 此函数会更新全局变量SystemCoreClock,并重新配置HAL_InitTick。 */ SystemClock_Config(); /* Event Recorder: - 可用于代码执行时间测量,MDK5.25及其以上版本才支持,IAR不支持。 - 默认不开启,如果要使能此选项,务必看V7开发板用户手册第xx章 */ #if Enable_EventRecorder == 1 /* 初始化EventRecorder并开启 */ EventRecorderInitialize(EventRecordAll, 1U); EventRecorderStart(); #endif bsp_InitKey(); /* 按键初始化,要放在滴答定时器之前,因为按钮检测是通过滴答定时器扫描 */ bsp_InitTimer(); /* 初始化滴答定时器 */ bsp_InitUart(); /* 初始化串口 */ bsp_InitExtIO(); /* 初始化FMC总线74HC574扩展IO. 必须在 bsp_InitLed()前执行 */ bsp_InitLed(); /* 初始化LED */ }
MPU配置和Cache配置:
数据Cache和指令Cache都开启。
AXI SRAM的MPU属性:
Write back, Read allocate,Write allocate。
FMC的扩展IO的MPU属性:
必须Device或者Strongly Ordered。
D2 SRAM1,SRAM2和SRAM3的MPU属性:
Write through, read allocate,no write allocate。
D3 SRAM4的MPU属性:
Write through, read allocate,no write allocate。
/* ********************************************************************************************************* * 函 数 名: MPU_Config * 功能说明: 配置MPU * 形 参: 无 * 返 回 值: 无 ********************************************************************************************************* */ static void MPU_Config( void ) { MPU_Region_InitTypeDef MPU_InitStruct; /* 禁止 MPU */ HAL_MPU_Disable(); /* 配置AXI SRAM的MPU属性为Write back, Read allocate,Write allocate */ MPU_InitStruct.Enable = MPU_REGION_ENABLE; MPU_InitStruct.BaseAddress = 0x24000000; MPU_InitStruct.Size = MPU_REGION_SIZE_512KB; MPU_InitStruct.AccessPermission = MPU_REGION_FULL_ACCESS; MPU_InitStruct.IsBufferable = MPU_ACCESS_BUFFERABLE; MPU_InitStruct.IsCacheable = MPU_ACCESS_CACHEABLE; MPU_InitStruct.IsShareable = MPU_ACCESS_NOT_SHAREABLE; MPU_InitStruct.Number = MPU_REGION_NUMBER0; MPU_InitStruct.TypeExtField = MPU_TEX_LEVEL1; MPU_InitStruct.SubRegionDisable = 0x00; MPU_InitStruct.DisableExec = MPU_INSTRUCTION_ACCESS_ENABLE; HAL_MPU_ConfigRegion(&MPU_InitStruct); /* 配置FMC扩展IO的MPU属性为Device或者Strongly Ordered */ MPU_InitStruct.Enable = MPU_REGION_ENABLE; MPU_InitStruct.BaseAddress = 0x60000000; MPU_InitStruct.Size = ARM_MPU_REGION_SIZE_64KB; MPU_InitStruct.AccessPermission = MPU_REGION_FULL_ACCESS; MPU_InitStruct.IsBufferable = MPU_ACCESS_BUFFERABLE; MPU_InitStruct.IsCacheable = MPU_ACCESS_NOT_CACHEABLE; MPU_InitStruct.IsShareable = MPU_ACCESS_NOT_SHAREABLE; MPU_InitStruct.Number = MPU_REGION_NUMBER1; MPU_InitStruct.TypeExtField = MPU_TEX_LEVEL0; MPU_InitStruct.SubRegionDisable = 0x00; MPU_InitStruct.DisableExec = MPU_INSTRUCTION_ACCESS_ENABLE; HAL_MPU_ConfigRegion(&MPU_InitStruct); /* 配置SRAM1的属性为Write through, read allocate,no write allocate */ MPU_InitStruct.Enable = MPU_REGION_ENABLE; MPU_InitStruct.BaseAddress = 0x30000000; MPU_InitStruct.Size = ARM_MPU_REGION_SIZE_128KB; MPU_InitStruct.AccessPermission = MPU_REGION_FULL_ACCESS; MPU_InitStruct.IsBufferable = MPU_ACCESS_NOT_BUFFERABLE; MPU_InitStruct.IsCacheable = MPU_ACCESS_CACHEABLE; MPU_InitStruct.IsShareable = MPU_ACCESS_NOT_SHAREABLE; MPU_InitStruct.Number = MPU_REGION_NUMBER2; MPU_InitStruct.TypeExtField = MPU_TEX_LEVEL0; MPU_InitStruct.SubRegionDisable = 0x00; MPU_InitStruct.DisableExec = MPU_INSTRUCTION_ACCESS_ENABLE; HAL_MPU_ConfigRegion(&MPU_InitStruct); /* 配置SRAM2的属性为Write through, read allocate,no write allocate */ MPU_InitStruct.Enable = MPU_REGION_ENABLE; MPU_InitStruct.BaseAddress = 0x30020000; MPU_InitStruct.Size = ARM_MPU_REGION_SIZE_128KB; MPU_InitStruct.AccessPermission = MPU_REGION_FULL_ACCESS; MPU_InitStruct.IsBufferable = MPU_ACCESS_NOT_BUFFERABLE; MPU_InitStruct.IsCacheable = MPU_ACCESS_CACHEABLE; MPU_InitStruct.IsShareable = MPU_ACCESS_NOT_SHAREABLE; MPU_InitStruct.Number = MPU_REGION_NUMBER3; MPU_InitStruct.TypeExtField = MPU_TEX_LEVEL0; MPU_InitStruct.SubRegionDisable = 0x00; MPU_InitStruct.DisableExec = MPU_INSTRUCTION_ACCESS_ENABLE; HAL_MPU_ConfigRegion(&MPU_InitStruct); /* 配置SRAM3的属性为Write through, read allocate,no write allocate */ MPU_InitStruct.Enable = MPU_REGION_ENABLE; MPU_InitStruct.BaseAddress = 0x30040000; MPU_InitStruct.Size = ARM_MPU_REGION_SIZE_32KB; MPU_InitStruct.AccessPermission = MPU_REGION_FULL_ACCESS; MPU_InitStruct.IsBufferable = MPU_ACCESS_NOT_BUFFERABLE; MPU_InitStruct.IsCacheable = MPU_ACCESS_CACHEABLE; MPU_InitStruct.IsShareable = MPU_ACCESS_NOT_SHAREABLE; MPU_InitStruct.Number = MPU_REGION_NUMBER4; MPU_InitStruct.TypeExtField = MPU_TEX_LEVEL0; MPU_InitStruct.SubRegionDisable = 0x00; MPU_InitStruct.DisableExec = MPU_INSTRUCTION_ACCESS_ENABLE; HAL_MPU_ConfigRegion(&MPU_InitStruct); /* 配置SRAM4的属性为Write through, read allocate,no write allocate */ MPU_InitStruct.Enable = MPU_REGION_ENABLE; MPU_InitStruct.BaseAddress = 0x38000000; MPU_InitStruct.Size = ARM_MPU_REGION_SIZE_64KB; MPU_InitStruct.AccessPermission = MPU_REGION_FULL_ACCESS; MPU_InitStruct.IsBufferable = MPU_ACCESS_NOT_BUFFERABLE; MPU_InitStruct.IsCacheable = MPU_ACCESS_CACHEABLE; MPU_InitStruct.IsShareable = MPU_ACCESS_NOT_SHAREABLE; MPU_InitStruct.Number = MPU_REGION_NUMBER5; MPU_InitStruct.TypeExtField = MPU_TEX_LEVEL0; MPU_InitStruct.SubRegionDisable = 0x00; MPU_InitStruct.DisableExec = MPU_INSTRUCTION_ACCESS_ENABLE; HAL_MPU_ConfigRegion(&MPU_InitStruct); /*使能 MPU */ HAL_MPU_Enable(MPU_PRIVILEGED_DEFAULT); } /* ********************************************************************************************************* * 函 数 名: CPU_CACHE_Enable * 功能说明: 使能L1 Cache * 形 参: 无 * 返 回 值: 无 ********************************************************************************************************* */ static void CPU_CACHE_Enable(void) { /* 使能 I-Cache */ SCB_EnableICache(); /* 使能 D-Cache */ SCB_EnableDCache(); }
主功能:
主功能的实现主要分为两部分:
- 启动自动重装软件定时器0,每100ms翻转一次LED2。
- K1键按下,操作AXI SRAM。
- K2键按下,操作D2域的SRAM1,SRAM2和SRAM3。
- K3键按下,操作D3域的SRAM4
/* ********************************************************************************************************* * 函 数 名: main * 功能说明: c程序入口 * 形 参: 无 * 返 回 值: 错误代码(无需处理) ********************************************************************************************************* */ int main(void) { uint8_t ucKeyCode; /* 按键代码 */ bsp_Init(); /* 硬件初始化 */ PrintfLogo(); /* 打印例程名称和版本等信息 */ PrintfHelp(); /* 打印操作提示 */ bsp_StartAutoTimer(0, 100); /* 启动1个100ms的自动重装的定时器 */ AXISRAMCount = 0; D2SRAMount = 0; D3SRAMCount = 0; /* 进入主程序循环体 */ while (1) { bsp_Idle(); /* 这个函数在bsp.c文件。用户可以修改这个函数实现CPU休眠和喂狗 */ /* 判断定时器超时时间 */ if (bsp_CheckTimer(0)) { /* 每隔100ms 进来一次 */ bsp_LedToggle(2); } /* 按键滤波和检测由后台systick中断服务程序实现,我们只需要调用bsp_GetKey读取键值即可。 */ ucKeyCode = bsp_GetKey(); /* 读取键值, 无键按下时返回 KEY_NONE = 0 */ if (ucKeyCode != KEY_NONE) { switch (ucKeyCode) { case KEY_DOWN_K1: /* K1键按下,操作AXI SRAM */ AXISRAMBuf[0] = AXISRAMCount++; AXISRAMBuf[5] = AXISRAMCount++; AXISRAMBuf[9] = AXISRAMCount++; printf("K1键按下, AXISRAMBuf[0] = %d, AXISRAMBuf[5] = %d, AXISRAMBuf[9] = %d\r\n", AXISRAMBuf[0], AXISRAMBuf[5], AXISRAMBuf[9]); break; case KEY_DOWN_K2: /* K2键按下,操作D2域的SRAM1,SRAM2和SRAM3 */ D2SRAMBuf[0] = D2SRAMount++; D2SRAMBuf[5] = D2SRAMount++; D2SRAMBuf[9] = D2SRAMount++; printf("K2键按下, D2SRAMBuf[0] = %d, D2SRAMBuf[5] = %d, D2SRAMBuf[9] = %d\r\n", D2SRAMBuf[0], D2SRAMBuf[5], D2SRAMBuf[9]); break; case KEY_DOWN_K3: /* K3键按下,操作D3域的SRAM4 */ D3SRAMBuf[0] = D3SRAMCount++; D3SRAMBuf[5] = D3SRAMCount++; D3SRAMBuf[9] = D3SRAMCount++; printf("K3键按下, D3SRAMBuf[0] = %d, D3SRAMBuf[5] = %d, D3SRAMBuf[9] = %d\r\n", D3SRAMBuf[0], D3SRAMBuf[5], D3SRAMBuf[9]); break; default: /* 其它的键值不处理 */ break; } } } }
26.6 实验例程说明(IAR)
配套例子:
V7-005_TCM,SRAM等五块内存的超方便使用方式
实验目的:
- 学习TCM,SRAM等五块内存的超方便使用方式。
实验内容:
- 启动自动重装软件定时器0,每100ms翻转一次LED2。
实验操作:
- K1键按下,操作AXI SRAM。
- K2键按下,操作D2域的SRAM1,SRAM2和SRAM3。
- K3键按下,操作D3域的SRAM4。
上电后串口打印的信息:
波特率 115200,数据位 8,奇偶校验位无,停止位 1
程序设计:
系统栈大小分配:
RAM空间用的DTCM:
硬件外设初始化
硬件外设的初始化是在 bsp.c 文件实现:
/* ********************************************************************************************************* * 函 数 名: bsp_Init * 功能说明: 初始化所有的硬件设备。该函数配置CPU寄存器和外设的寄存器并初始化一些全局变量。只需要调用一次 * 形 参:无 * 返 回 值: 无 ********************************************************************************************************* */ void bsp_Init(void) { /* 配置MPU */ MPU_Config(); /* 使能L1 Cache */ CPU_CACHE_Enable(); /* STM32H7xx HAL 库初始化,此时系统用的还是H7自带的64MHz,HSI时钟: - 调用函数HAL_InitTick,初始化滴答时钟中断1ms。 - 设置NVIV优先级分组为4。 */ HAL_Init(); /* 配置系统时钟到400MHz - 切换使用HSE。 - 此函数会更新全局变量SystemCoreClock,并重新配置HAL_InitTick。 */ SystemClock_Config(); /* Event Recorder: - 可用于代码执行时间测量,MDK5.25及其以上版本才支持,IAR不支持。 - 默认不开启,如果要使能此选项,务必看V7开发板用户手册第xx章 */ #if Enable_EventRecorder == 1 /* 初始化EventRecorder并开启 */ EventRecorderInitialize(EventRecordAll, 1U); EventRecorderStart(); #endif bsp_InitKey(); /* 按键初始化,要放在滴答定时器之前,因为按钮检测是通过滴答定时器扫描 */ bsp_InitTimer(); /* 初始化滴答定时器 */ bsp_InitUart(); /* 初始化串口 */ bsp_InitExtIO(); /* 初始化FMC总线74HC574扩展IO. 必须在 bsp_InitLed()前执行 */ bsp_InitLed(); /* 初始化LED */ }
MPU配置和Cache配置:
数据Cache和指令Cache都开启。
AXI SRAM的MPU属性:
Write back, Read allocate,Write allocate。
FMC的扩展IO的MPU属性:
必须Device或者Strongly Ordered。
D2 SRAM1,SRAM2和SRAM3的MPU属性:
Write through, read allocate,no write allocate。
D3 SRAM4的MPU属性:
Write through, read allocate,no write allocate。
/* ********************************************************************************************************* * 函 数 名: MPU_Config * 功能说明: 配置MPU * 形 参: 无 * 返 回 值: 无 ********************************************************************************************************* */ static void MPU_Config( void ) { MPU_Region_InitTypeDef MPU_InitStruct; /* 禁止 MPU */ HAL_MPU_Disable(); /* 配置AXI SRAM的MPU属性为Write back, Read allocate,Write allocate */ MPU_InitStruct.Enable = MPU_REGION_ENABLE; MPU_InitStruct.BaseAddress = 0x24000000; MPU_InitStruct.Size = MPU_REGION_SIZE_512KB; MPU_InitStruct.AccessPermission = MPU_REGION_FULL_ACCESS; MPU_InitStruct.IsBufferable = MPU_ACCESS_BUFFERABLE; MPU_InitStruct.IsCacheable = MPU_ACCESS_CACHEABLE; MPU_InitStruct.IsShareable = MPU_ACCESS_NOT_SHAREABLE; MPU_InitStruct.Number = MPU_REGION_NUMBER0; MPU_InitStruct.TypeExtField = MPU_TEX_LEVEL1; MPU_InitStruct.SubRegionDisable = 0x00; MPU_InitStruct.DisableExec = MPU_INSTRUCTION_ACCESS_ENABLE; HAL_MPU_ConfigRegion(&MPU_InitStruct); /* 配置FMC扩展IO的MPU属性为Device或者Strongly Ordered */ MPU_InitStruct.Enable = MPU_REGION_ENABLE; MPU_InitStruct.BaseAddress = 0x60000000; MPU_InitStruct.Size = ARM_MPU_REGION_SIZE_64KB; MPU_InitStruct.AccessPermission = MPU_REGION_FULL_ACCESS; MPU_InitStruct.IsBufferable = MPU_ACCESS_BUFFERABLE; MPU_InitStruct.IsCacheable = MPU_ACCESS_NOT_CACHEABLE; MPU_InitStruct.IsShareable = MPU_ACCESS_NOT_SHAREABLE; MPU_InitStruct.Number = MPU_REGION_NUMBER1; MPU_InitStruct.TypeExtField = MPU_TEX_LEVEL0; MPU_InitStruct.SubRegionDisable = 0x00; MPU_InitStruct.DisableExec = MPU_INSTRUCTION_ACCESS_ENABLE; HAL_MPU_ConfigRegion(&MPU_InitStruct); /* 配置SRAM1的属性为Write through, read allocate,no write allocate */ MPU_InitStruct.Enable = MPU_REGION_ENABLE; MPU_InitStruct.BaseAddress = 0x30000000; MPU_InitStruct.Size = ARM_MPU_REGION_SIZE_128KB; MPU_InitStruct.AccessPermission = MPU_REGION_FULL_ACCESS; MPU_InitStruct.IsBufferable = MPU_ACCESS_NOT_BUFFERABLE; MPU_InitStruct.IsCacheable = MPU_ACCESS_CACHEABLE; MPU_InitStruct.IsShareable = MPU_ACCESS_NOT_SHAREABLE; MPU_InitStruct.Number = MPU_REGION_NUMBER2; MPU_InitStruct.TypeExtField = MPU_TEX_LEVEL0; MPU_InitStruct.SubRegionDisable = 0x00; MPU_InitStruct.DisableExec = MPU_INSTRUCTION_ACCESS_ENABLE; HAL_MPU_ConfigRegion(&MPU_InitStruct); /* 配置SRAM2的属性为Write through, read allocate,no write allocate */ MPU_InitStruct.Enable = MPU_REGION_ENABLE; MPU_InitStruct.BaseAddress = 0x30020000; MPU_InitStruct.Size = ARM_MPU_REGION_SIZE_128KB; MPU_InitStruct.AccessPermission = MPU_REGION_FULL_ACCESS; MPU_InitStruct.IsBufferable = MPU_ACCESS_NOT_BUFFERABLE; MPU_InitStruct.IsCacheable = MPU_ACCESS_CACHEABLE; MPU_InitStruct.IsShareable = MPU_ACCESS_NOT_SHAREABLE; MPU_InitStruct.Number = MPU_REGION_NUMBER3; MPU_InitStruct.TypeExtField = MPU_TEX_LEVEL0; MPU_InitStruct.SubRegionDisable = 0x00; MPU_InitStruct.DisableExec = MPU_INSTRUCTION_ACCESS_ENABLE; HAL_MPU_ConfigRegion(&MPU_InitStruct); /* 配置SRAM3的属性为Write through, read allocate,no write allocate */ MPU_InitStruct.Enable = MPU_REGION_ENABLE; MPU_InitStruct.BaseAddress = 0x30040000; MPU_InitStruct.Size = ARM_MPU_REGION_SIZE_32KB; MPU_InitStruct.AccessPermission = MPU_REGION_FULL_ACCESS; MPU_InitStruct.IsBufferable = MPU_ACCESS_NOT_BUFFERABLE; MPU_InitStruct.IsCacheable = MPU_ACCESS_CACHEABLE; MPU_InitStruct.IsShareable = MPU_ACCESS_NOT_SHAREABLE; MPU_InitStruct.Number = MPU_REGION_NUMBER4; MPU_InitStruct.TypeExtField = MPU_TEX_LEVEL0; MPU_InitStruct.SubRegionDisable = 0x00; MPU_InitStruct.DisableExec = MPU_INSTRUCTION_ACCESS_ENABLE; HAL_MPU_ConfigRegion(&MPU_InitStruct); /* 配置SRAM4的属性为Write through, read allocate,no write allocate */ MPU_InitStruct.Enable = MPU_REGION_ENABLE; MPU_InitStruct.BaseAddress = 0x38000000; MPU_InitStruct.Size = ARM_MPU_REGION_SIZE_64KB; MPU_InitStruct.AccessPermission = MPU_REGION_FULL_ACCESS; MPU_InitStruct.IsBufferable = MPU_ACCESS_NOT_BUFFERABLE; MPU_InitStruct.IsCacheable = MPU_ACCESS_CACHEABLE; MPU_InitStruct.IsShareable = MPU_ACCESS_NOT_SHAREABLE; MPU_InitStruct.Number = MPU_REGION_NUMBER5; MPU_InitStruct.TypeExtField = MPU_TEX_LEVEL0; MPU_InitStruct.SubRegionDisable = 0x00; MPU_InitStruct.DisableExec = MPU_INSTRUCTION_ACCESS_ENABLE; HAL_MPU_ConfigRegion(&MPU_InitStruct); /*使能 MPU */ HAL_MPU_Enable(MPU_PRIVILEGED_DEFAULT); } /* ********************************************************************************************************* * 函 数 名: CPU_CACHE_Enable * 功能说明: 使能L1 Cache * 形 参: 无 * 返 回 值: 无 ********************************************************************************************************* */ static void CPU_CACHE_Enable(void) { /* 使能 I-Cache */ SCB_EnableICache(); /* 使能 D-Cache */ SCB_EnableDCache(); }
主功能:
主功能的实现主要分为两部分:
- 启动自动重装软件定时器0,每100ms翻转一次LED2。
- K1键按下,操作AXI SRAM。
- K2键按下,操作D2域的SRAM1,SRAM2和SRAM3。
- K3键按下,操作D3域的SRAM4
/* ********************************************************************************************************* * 函 数 名: main * 功能说明: c程序入口 * 形 参: 无 * 返 回 值: 错误代码(无需处理) ********************************************************************************************************* */ int main(void) { uint8_t ucKeyCode; /* 按键代码 */ bsp_Init(); /* 硬件初始化 */ PrintfLogo(); /* 打印例程名称和版本等信息 */ PrintfHelp(); /* 打印操作提示 */ bsp_StartAutoTimer(0, 100); /* 启动1个100ms的自动重装的定时器 */ AXISRAMCount = 0; D2SRAMount = 0; D3SRAMCount = 0; /* 进入主程序循环体 */ while (1) { bsp_Idle(); /* 这个函数在bsp.c文件。用户可以修改这个函数实现CPU休眠和喂狗 */ /* 判断定时器超时时间 */ if (bsp_CheckTimer(0)) { /* 每隔100ms 进来一次 */ bsp_LedToggle(2); } /* 按键滤波和检测由后台systick中断服务程序实现,我们只需要调用bsp_GetKey读取键值即可。 */ ucKeyCode = bsp_GetKey(); /* 读取键值, 无键按下时返回 KEY_NONE = 0 */ if (ucKeyCode != KEY_NONE) { switch (ucKeyCode) { case KEY_DOWN_K1: /* K1键按下,操作AXI SRAM */ AXISRAMBuf[0] = AXISRAMCount++; AXISRAMBuf[5] = AXISRAMCount++; AXISRAMBuf[9] = AXISRAMCount++; printf("K1键按下, AXISRAMBuf[0] = %d, AXISRAMBuf[5] = %d, AXISRAMBuf[9] = %d\r\n", AXISRAMBuf[0], AXISRAMBuf[5], AXISRAMBuf[9]); break; case KEY_DOWN_K2: /* K2键按下,操作D2域的SRAM1,SRAM2和SRAM3 */ D2SRAMBuf[0] = D2SRAMount++; D2SRAMBuf[5] = D2SRAMount++; D2SRAMBuf[9] = D2SRAMount++; printf("K2键按下, D2SRAMBuf[0] = %d, D2SRAMBuf[5] = %d, D2SRAMBuf[9] = %d\r\n", D2SRAMBuf[0], D2SRAMBuf[5], D2SRAMBuf[9]); break; case KEY_DOWN_K3: /* K3键按下,操作D3域的SRAM4 */ D3SRAMBuf[0] = D3SRAMCount++; D3SRAMBuf[5] = D3SRAMCount++; D3SRAMBuf[9] = D3SRAMCount++; printf("K3键按下, D3SRAMBuf[0] = %d, D3SRAMBuf[5] = %d, D3SRAMBuf[9] = %d\r\n", D3SRAMBuf[0], D3SRAMBuf[5], D3SRAMBuf[9]); break; default: /* 其它的键值不处理 */ break; } } } }
26.7 总结
本章节为大家介绍的方案比较实用,建议在实际项目中多用用,从而熟练掌握。