CDH离线数据导入solr:利用MapReduceIndexerTool将json文件批量导入到solr

场景描述:前段时间,将实时数据通过kafka+flume+morphline的方式接入到solr中。新进来的数据已经可以在solr中看到了,但是以前的历史数据还没有导入solr。

CDH提供利用MapReduceIndexerTool来将HDFS的数据导入到solr。

历史数据格式类似如下按年/月/日保存在HDFS上每天一个文件:

-/user/data/2016

-11

  -1

    -data.txt

  -2

    -data.txt 

-12

   -1

    -data.txt

   -2

    -data.txt

文件的格式为一行一行的json。

 

思路:

先对2016目录下的所有子目录遍历文件,

再对文件进行批量的索引操作。

 

使用命令:(jar包在/opt/cloudera/parcels/CDH/jars下)

hadoop jar search-mr-1.0.0-cdh5.8.0-job.jar org.apache.solr.hadoop.HdfsFindTool  -find hdfs://cdh-master/user/kafkadata/eventCount/2016/11  -type f | sudo -u xuyali hadoop --config /etc/hadoop/conf.solrindexer/  jar search-mr-1.0.0-cdh5.8.0-job.jar  org.apache.solr.hadoop.MapReduceIndexerTool --log4j log4j.properties  --morphline-file morphline.conf --zk-host cdh-master:2181/solr --collection event_count_records  --output-dir hdfs://cdh-master/user/hdfs/test/ --verbose --go-live  --input-list -

参考:cdh官方文档——batch indexing solr

*注意:官方文档中用的配置是mapreduce1,可以用yarn的客户端配置来代替该配置。

 

morphline.conf

SOLR_LOCATOR : {
  # Name of solr collection
  collection : event_count_records
  
  # ZooKeeper ensemble 
  #CDH的专有写法,开源版本不支持。
  zkHost : "$ZK_HOST"
  }

morphlines : [
  {
    id : morphline1
    importCommands : ["org.kitesdk.**", "org.apache.solr.**"]
    
    commands : [  
{
readLine {
  charset : UTF-8
}
}
{setValues:{_attachment_body : "@{message}"}}

{java:{
imports:"import java.io.*;import org.kitesdk.morphline.base.Fields;"
code:"""
String message=(String)record.getFirstValue(Fields.ATTACHMENT_BODY);
        if(message.contains("'"))
        {
            return true;
        }
        InputStream   inputStream   =   new   ByteArrayInputStream(message.getBytes());
        record.removeAll(Fields.ATTACHMENT_BODY);
        record.put(Fields.ATTACHMENT_BODY, inputStream);
        return child.process(record);
"""
}}

{
  #Flume传过来的kafka的json数据是用二进制流的形式,需要先读取json
   readJson{}
}

{
 #读出来的json字段必须转换成filed才能被solr索引到
extractJsonPaths {
 flatten:true
 paths:{
account:/account
accountName:/accountName
subaccount:/subaccount
subaccountName:/subaccountName
eventTime:/timestamp
eventType:/eventType
eventTags:"/eventTags[]/name"
#按UTC时间存timestamp
eventTimeInMinuteUTC_tdt:/timestamp
#按China时间存timestamp
eventTimeInMinuteChina_tdt:/timestamp
#按UTC时间存timestamp
eventTimeInHourUTC_tdt:/timestamp
#_tdt后缀会被动态识别为日期类型的索引字段
#按不同时间间隔存索引以增加查询性能
}
 
}
}

#转换long型时间为Date格式
{convertTimestamp {
  field : eventTimeInMinuteChina_tdt
  inputFormats : ["unixTimeInMillis"]
  inputTimezone : UTC
  outputFormat : "yyyy-MM-dd'T'HH:mm:ss.SSS'Z/MINUTE'"
  outputTimezone : Asia/Shanghai
}}

{convertTimestamp {
  field : eventTimeInMinuteUTC_tdt
  inputFormats : ["unixTimeInMillis"]
  inputTimezone : UTC
  outputFormat : "yyyy-MM-dd'T'HH:mm:ss.SSS'Z/MINUTE'"
  outputTimezone : UTC
}}

{convertTimestamp {
  field : eventTimeInHourUTC_tdt
  inputFormats : ["unixTimeInMillis"]
  inputTimezone : UTC
  outputFormat : "yyyy-MM-dd'T'HH:mm:ss.SSS'Z/HOUR'"
  outputTimezone : UTC
}}

#kafka中的json数据传到flume中时会被放入_attachment_body字段,readJson后会变成JsonNode对象,需要toString之后才能保存
{toString { field : _attachment_body }}


#为每一条记录生成一个UUID
{generateUUID {
  field : id
}}

sanitizeUnknownSolrFields {
  solrLocator : ${SOLR_LOCATOR}
}

#对未定义的Solr字段加tws前缀,根据schema.xml中定义的tws_*为text_ws类型,会动态未未定义的字段建索引。  

#将数据导入到solr中                
      {loadSolr {solrLocator : ${SOLR_LOCATOR}}}
    ]
  }
]

log4j.properties:

log4j.rootLogger=WARN, A1

log4j.logger.org.apache.flume.sink=INFO
#log4j.logger.org.apache.flume.sink.solr=DEBUG
log4j.logger.org.apache.solr=INFO
#log4j.logger.org.apache.solr.hadoop=DEBUG
log4j.logger.org.kitesdk.morphline=TRACE
#log4j.logger.org.apache.solr.morphline=DEBUG
log4j.logger.org.apache.solr.update.processor.LogUpdateProcessor=WARN
log4j.logger.org.apache.solr.core.SolrCore=WARN
log4j.logger.org.apache.solr.search.SolrIndexSearcher=ERROR

# A1 is set to be a ConsoleAppender.
log4j.appender.A1=org.apache.log4j.ConsoleAppender

# A1 uses PatternLayout.
log4j.appender.A1.layout=org.apache.log4j.PatternLayout
log4j.appender.A1.layout.ConversionPattern=%-4r [%t] %-5p %c %x - %m%n

map数等于要被批量索引的文件数。

yarn的客户端配置可以作下修改,设置reduce的个数,每个map占用的内存cpu等(map数不能修改)。

 

 

任务完成提示:

image

 

*批量索引的效率并不一定总是比实时索引高,但优点是不吃solr服务性能——没有调用solr接口,而是直接生成索引文件后移至solr collection目录下。

*调试morphline.conf bug时先用小点的单个文件,如果morphline写的有错,一个文件的任务失败会导致整个任务失败。

posted @ 2017-01-04 15:20  Arli  阅读(1886)  评论(0编辑  收藏  举报