简单线性回归(最小二乘法)python实现
简单线性回归(最小二乘法)¶
0.引入依赖¶
In [7]:
import numpy as np
import matplotlib.pyplot as plt
1.导入数据¶
In [15]:
points = np.genfromtxt("data.csv",delimiter=",")
#points
#提取points中的两列数据,分别作为x,y
x=points[:,0];
y=points[:,1];
#用plt画出散点图
plt.scatter(x,y)
plt.show()
2.定义损失函数¶
In [17]:
# 损失函数是系数的函数,另外还要传入数据的x,y
def compute_cost(w,b,points):
total_cost=0
M =len(points)
for i in range(M):
x=points[i,0]
y=points[i,1]
total_cost += (y-w*x-b)**2
return total_cost/M #一除都是浮点 两个除号是地板除,整型。 如 3 // 4
3.定义核心算法拟合函数¶
In [24]:
# 先定义一个求均值的函数 问题 求均值是不是可以直接用np.mean(data)来实现?
# def average(data):
# sum=0
# num=len(data)
# for i in range(num):
# sum += data[i]
# return sum/num
# print(average(x))
# print(np.mean(x))
#打印出来结果一样,可以通用。
#定义核心拟合函数
def fit(points):
M = len(points)
x_bar=np.mean(points[:,0])
sum_yx= 0
sum_x2=0
sum_delta =0
for i in range(M):
x=points[i,0]
y=points[i,1]
sum_yx += y*(x-x_bar)
sum_x2 += x**2
#根据公式计算w
w = sum_yx/(sum_x2-M*(x_bar**2))
for i in range(M):
x=points[i,0]
y=points[i,1]
sum_delta += (y-w*x)
b = sum_delta / M
return w,b
测试¶
In [25]:
w,b =fit(points)
In [29]:
w,b
print ("w is :",w)
print ("b is :",b)
cost = compute_cost(w,b,points)
print("cost is :" ,cost)
5.画出拟合曲线¶
In [31]:
plt.scatter(x,y)
pred_y= w*x+b
plt.plot(x,pred_y,c='r')
Out[31]:
In [ ]:
如果,您认为阅读这篇博客让您有些收获,不妨点击一下右下角的【推荐】。
如果,您希望更容易地发现我的新博客,不妨点击一下左下角的【关注我】。
如果,您对我的博客所讲述的内容有兴趣,请继续关注我的后续博客,我是【Arli】。
本文版权归作者和博客园共有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连接,否则保留追究法律责任的权利。