摘要:
译文 摘要:在深度卷积网络(ConvNet)的帮助下,边缘检测已经取得了重大进展。基于ConvNet的边缘检测器在标准基准测试中达到了人类水平。我们提供了对于这些检测器输出的系统研究,且经研究表明它们没有准确定位边缘,这对于需要清晰的边缘输入的任务来说可能是背道而驰的。此外,我们提出了一种新颖的细化 阅读全文
摘要:
文章采用了多实例学习(MIL)机制构建图像标签同像素语义的关联 。 该方法的训练样本包含了70 万张来自ImageNet的图片,但其语义分割的性能很大程度上依赖于复杂的后处理过程,主要包括图像级语义的预测信息、超像素平滑策略、物体候选框平滑策略和 MCG分割区域平滑策略。 下图是论文所用方法的一般性 阅读全文
摘要:
图像语义分割,简单而言就是给定一张图片,对图片上的每一个像素点分类。 图像语义分割,从FCN把深度学习引入这个任务,一个通用的框架事:前端使用FCN全卷积网络输出粗糙的label map,后端使用CRF条件随机场/MRF马尔科夫随机场等优化前端的输出,最后得到一个精细的分割图。 前端 为什么需要FC 阅读全文
摘要:
发表于2015年这篇《Fully Convolutional Networks for Semantic Segmentation》在图像语义分割领域举足轻重。 1 CNN 与 FCN 通常CNN网络在卷积层之后会接上若干个全连接层, 将卷积层产生的特征图(feature map)映射成一个固定长度 阅读全文
该文被密码保护。 阅读全文
摘要:
写在前面:一篇魏云超博士的综述论文,完整题目为《基于DCNN的图像语义分割综述》,在这里选择性摘抄和理解,以加深自己印象,同时达到对近年来图像语义分割历史学习和了解的目的,博古才能通今!感兴趣的请根据自己情况找来完整文章阅读学习。 图像的语义分割是计算机视觉中重要的基本问题之一,其目标是对图像的每个 阅读全文
摘要:
论文题目是STC,即Simple to Complex的一个框架,使用弱标签(image label)来解决密集估计(语义分割)问题。 2014年末以来,半监督的语义分割层出不穷,究其原因还是因为pixel级别的GroundTruth太难标注,因此弱监督成了人们研究的一个热门方向。 作者的核心思想是 阅读全文
摘要:
文章给的定义是: 数据集的标签是不可靠的,如(x,y),y对于x的标记是不可靠的。这里的不可靠可以是标记不正确,多种标记,标记不充分,局部标记等。 在实际应用中的学习问题往往以混合形式出现,如多标记多示例、半监督多标记、弱标记多标记等。针对监督信息不完整或不明确对象的学习问题统称为弱监督学习。 弱监 阅读全文
摘要:
先说一下前期准备工作:自己的运行环境是Ubuntu16.04+caffe+CPU(这台电脑没有GPU)+python 关于python的搭建就不说了,网上随便一搜,很多参考资源。说一下我配置好caffe之后,编译python接口时遇到的问题,以及我用到的解决办法。 比较顺利地配置好caffe只后,到 阅读全文
摘要:
往期回顾 在上一篇文章中,我们已经学会了编写一个简单的感知器,并用它来实现一个线性分类器。你应该还记得用来训练感知器的『感知器规则』。然而,我们并没有关心这个规则是怎么得到的。本文通过介绍另外一种『感知器』,也就是『线性单元』,来说明关于机器学习一些基本的概念,比如模型、目标函数、优化算法等等。这些 阅读全文