LeetCode(85):最大矩形

Hard!

题目描述:

给定一个仅包含 0 和 1 的二维二进制矩阵,找出只包含 1 的最大矩形,并返回其面积。

示例:

输入:
[
  ["1","0","1","0","0"],
  ["1","0","1","1","1"],
  ["1","1","1","1","1"],
  ["1","0","0","1","0"]
]
输出: 6

解题思路:

此题是之前那道的 Largest Rectangle in Histogram 直方图中最大的矩形 (http://www.cnblogs.com/grandyang/p/4322653.html)的扩展,这道题的二维矩阵每一层向上都可以看做一个直方图,输入矩阵有多少行,就可以形成多少个直方图,对每个直方图都调用http://www.cnblogs.com/grandyang/p/4322653.html中的方法,就可以得到最大的矩形面积。那么这道题唯一要做的就是将每一层构成直方图,由于题目限定了输入矩阵的字符只有 '0' 和 '1' 两种,所以处理起来也相对简单。方法是,对于每一个点,如果是‘0’,则赋0,如果是 ‘1’,就赋 之前的height值加上1。

C++解法一:

 1 class Solution {
 2 public:
 3     int maximalRectangle(vector<vector<char> > &matrix) {
 4         int res = 0;
 5         vector<int> height;
 6         for (int i = 0; i < matrix.size(); ++i) {
 7             height.resize(matrix[i].size());
 8             for (int j = 0; j < matrix[i].size(); ++j) {
 9                 height[j] = matrix[i][j] == '0' ? 0 : (1 + height[j]);
10             }
11             res = max(res, largestRectangleArea(height));
12         }
13         return res;
14     }
15     int largestRectangleArea(vector<int> &height) {
16         int res = 0;
17         stack<int> s;
18         height.push_back(0);
19         for (int i = 0; i < height.size(); ++i) {
20             if (s.empty() || height[s.top()] <= height[i]) s.push(i);
21             else {
22                 int tmp = s.top();
23                 s.pop();
24                 res = max(res, height[tmp] * (s.empty() ? i : (i - s.top() - 1)));
25                 --i;
26             }
27         }
28         return res;
29     }
30 };

我们也可以在一个函数内完成,这样代码看起来更加简洁一些:

C++解法二:

 1 class Solution {
 2 public:
 3     int maximalRectangle(vector<vector<char>>& matrix) {
 4         if (matrix.empty() || matrix[0].empty()) return 0;
 5         int res = 0, m = matrix.size(), n = matrix[0].size();
 6         vector<int> height(n + 1, 0);
 7         for (int i = 0; i < m; ++i) {
 8             stack<int> s;
 9             for (int j = 0; j < n + 1; ++j) {
10                 if (j < n) {
11                     height[j] = matrix[i][j] == '1' ? height[j] + 1 : 0;
12                 }
13                 while (!s.empty() && height[s.top()] >= height[j]) {
14                     int cur = s.top(); s.pop();
15                     res = max(res, height[cur] * (s.empty() ? j : (j - s.top() - 1)));
16                 }
17                 s.push(j);
18             }
19         }
20         return res;
21     }
22 };

下面这种方法的思路很巧妙,height数组和上面一样,这里的left数组表示左边界是1的位置,right数组表示右边界是1的位置,那么对于任意一行的第j个位置,矩形为(right[j] - left[j]) * height[j],我们举个例子来说明,比如给定矩阵为:

[
  [1, 1, 0, 0, 1],
  [0, 1, 0, 0, 1],
  [0, 0, 1, 1, 1],
  [0, 0, 1, 1, 1],
  [0, 0, 0, 0, 1]
]

第0行:

h: 1 1 0 0 1
l: 0 0 0 0 4
r: 2 2 5 5 5 

第1行:

h: 1 1 0 0 1
l: 0 0 0 0 4
r: 2 2 5 5 5 

第2行:

h: 0 0 1 1 3
l: 0 0 2 2 4
r: 5 5 5 5 5

第3行:

h: 0 0 2 2 4
l: 0 0 2 2 4
r: 5 5 5 5 5

第4行:

h: 0 0 0 0 5
l: 0 0 0 0 4
r: 5 5 5 5 5 

C++解法三:

 1 class Solution {
 2 public:
 3     int maximalRectangle(vector<vector<char>>& matrix) {
 4         if (matrix.empty() || matrix[0].empty()) return 0;
 5         int res = 0, m = matrix.size(), n = matrix[0].size();
 6         vector<int> height(n, 0), left(n, 0), right(n, n);
 7         for (int i = 0; i < m; ++i) {
 8             int cur_left = 0, cur_right = n;
 9             for (int j = 0; j < n; ++j) {
10                 if (matrix[i][j] == '1') ++height[j];
11                 else height[j] = 0;
12             }
13             for (int j = 0; j < n; ++j) {
14                 if (matrix[i][j] == '1') left[j] = max(left[j], cur_left);
15                 else {left[j] = 0; cur_left = j + 1;}
16             }
17             for (int j = n - 1; j >= 0; --j) {
18                 if (matrix[i][j] == '1') right[j] = min(right[j], cur_right);
19                 else {right[j] = n; cur_right = j;}
20             }
21             for (int j = 0; j < n; ++j) {
22                 res = max(res, (right[j] - left[j]) * height[j]);
23             }
24         }
25         return res;
26     }
27 };

我们也可以通过合并一些for循环,使得运算速度更快一些:

C++解法四:

 1 class Solution {
 2 public:
 3     int maximalRectangle(vector<vector<char>>& matrix) {
 4         if (matrix.empty() || matrix[0].empty()) return 0;
 5         int res = 0, m = matrix.size(), n = matrix[0].size();
 6         vector<int> height(n, 0), left(n, 0), right(n, n);
 7         for (int i = 0; i < m; ++i) {
 8             int cur_left = 0, cur_right = n;
 9             for (int j = 0; j < n; ++j) {
10                 if (matrix[i][j] == '1') {
11                     ++height[j];
12                     left[j] = max(left[j], cur_left);
13                 } else {
14                     height[j] = 0;
15                     left[j] = 0;
16                     cur_left = j + 1;
17                 }
18             }
19             for (int j = n - 1; j >= 0; --j) {
20                 if (matrix[i][j] == '1') {
21                     right[j] = min(right[j], cur_right);
22                 } else {
23                     right[j] = n;
24                     cur_right = j;
25                 }
26                 res = max(res, (right[j] - left[j]) * height[j]);
27             }
28         }
29         return res;
30     }
31 };

 

posted @ 2018-06-09 13:47  Ariel_一只猫的旅行  阅读(3347)  评论(0编辑  收藏  举报