LeetCode(85):最大矩形
Hard!
题目描述:
给定一个仅包含 0 和 1 的二维二进制矩阵,找出只包含 1 的最大矩形,并返回其面积。
示例:
输入: [ ["1","0","1","0","0"], ["1","0","1","1","1"], ["1","1","1","1","1"], ["1","0","0","1","0"] ] 输出: 6
解题思路:
此题是之前那道的 Largest Rectangle in Histogram 直方图中最大的矩形 (http://www.cnblogs.com/grandyang/p/4322653.html)的扩展,这道题的二维矩阵每一层向上都可以看做一个直方图,输入矩阵有多少行,就可以形成多少个直方图,对每个直方图都调用http://www.cnblogs.com/grandyang/p/4322653.html中的方法,就可以得到最大的矩形面积。那么这道题唯一要做的就是将每一层构成直方图,由于题目限定了输入矩阵的字符只有 '0' 和 '1' 两种,所以处理起来也相对简单。方法是,对于每一个点,如果是‘0’,则赋0,如果是 ‘1’,就赋 之前的height值加上1。
C++解法一:
1 class Solution { 2 public: 3 int maximalRectangle(vector<vector<char> > &matrix) { 4 int res = 0; 5 vector<int> height; 6 for (int i = 0; i < matrix.size(); ++i) { 7 height.resize(matrix[i].size()); 8 for (int j = 0; j < matrix[i].size(); ++j) { 9 height[j] = matrix[i][j] == '0' ? 0 : (1 + height[j]); 10 } 11 res = max(res, largestRectangleArea(height)); 12 } 13 return res; 14 } 15 int largestRectangleArea(vector<int> &height) { 16 int res = 0; 17 stack<int> s; 18 height.push_back(0); 19 for (int i = 0; i < height.size(); ++i) { 20 if (s.empty() || height[s.top()] <= height[i]) s.push(i); 21 else { 22 int tmp = s.top(); 23 s.pop(); 24 res = max(res, height[tmp] * (s.empty() ? i : (i - s.top() - 1))); 25 --i; 26 } 27 } 28 return res; 29 } 30 };
我们也可以在一个函数内完成,这样代码看起来更加简洁一些:
C++解法二:
1 class Solution { 2 public: 3 int maximalRectangle(vector<vector<char>>& matrix) { 4 if (matrix.empty() || matrix[0].empty()) return 0; 5 int res = 0, m = matrix.size(), n = matrix[0].size(); 6 vector<int> height(n + 1, 0); 7 for (int i = 0; i < m; ++i) { 8 stack<int> s; 9 for (int j = 0; j < n + 1; ++j) { 10 if (j < n) { 11 height[j] = matrix[i][j] == '1' ? height[j] + 1 : 0; 12 } 13 while (!s.empty() && height[s.top()] >= height[j]) { 14 int cur = s.top(); s.pop(); 15 res = max(res, height[cur] * (s.empty() ? j : (j - s.top() - 1))); 16 } 17 s.push(j); 18 } 19 } 20 return res; 21 } 22 };
下面这种方法的思路很巧妙,height数组和上面一样,这里的left数组表示左边界是1的位置,right数组表示右边界是1的位置,那么对于任意一行的第j个位置,矩形为(right[j] - left[j]) * height[j],我们举个例子来说明,比如给定矩阵为:
[
[1, 1, 0, 0, 1],
[0, 1, 0, 0, 1],
[0, 0, 1, 1, 1],
[0, 0, 1, 1, 1],
[0, 0, 0, 0, 1]
]
第0行:
h: 1 1 0 0 1 l: 0 0 0 0 4 r: 2 2 5 5 5
第1行:
h: 1 1 0 0 1 l: 0 0 0 0 4 r: 2 2 5 5 5
第2行:
h: 0 0 1 1 3 l: 0 0 2 2 4 r: 5 5 5 5 5
第3行:
h: 0 0 2 2 4 l: 0 0 2 2 4 r: 5 5 5 5 5
第4行:
h: 0 0 0 0 5 l: 0 0 0 0 4 r: 5 5 5 5 5
C++解法三:
1 class Solution { 2 public: 3 int maximalRectangle(vector<vector<char>>& matrix) { 4 if (matrix.empty() || matrix[0].empty()) return 0; 5 int res = 0, m = matrix.size(), n = matrix[0].size(); 6 vector<int> height(n, 0), left(n, 0), right(n, n); 7 for (int i = 0; i < m; ++i) { 8 int cur_left = 0, cur_right = n; 9 for (int j = 0; j < n; ++j) { 10 if (matrix[i][j] == '1') ++height[j]; 11 else height[j] = 0; 12 } 13 for (int j = 0; j < n; ++j) { 14 if (matrix[i][j] == '1') left[j] = max(left[j], cur_left); 15 else {left[j] = 0; cur_left = j + 1;} 16 } 17 for (int j = n - 1; j >= 0; --j) { 18 if (matrix[i][j] == '1') right[j] = min(right[j], cur_right); 19 else {right[j] = n; cur_right = j;} 20 } 21 for (int j = 0; j < n; ++j) { 22 res = max(res, (right[j] - left[j]) * height[j]); 23 } 24 } 25 return res; 26 } 27 };
我们也可以通过合并一些for循环,使得运算速度更快一些:
C++解法四:
1 class Solution { 2 public: 3 int maximalRectangle(vector<vector<char>>& matrix) { 4 if (matrix.empty() || matrix[0].empty()) return 0; 5 int res = 0, m = matrix.size(), n = matrix[0].size(); 6 vector<int> height(n, 0), left(n, 0), right(n, n); 7 for (int i = 0; i < m; ++i) { 8 int cur_left = 0, cur_right = n; 9 for (int j = 0; j < n; ++j) { 10 if (matrix[i][j] == '1') { 11 ++height[j]; 12 left[j] = max(left[j], cur_left); 13 } else { 14 height[j] = 0; 15 left[j] = 0; 16 cur_left = j + 1; 17 } 18 } 19 for (int j = n - 1; j >= 0; --j) { 20 if (matrix[i][j] == '1') { 21 right[j] = min(right[j], cur_right); 22 } else { 23 right[j] = n; 24 cur_right = j; 25 } 26 res = max(res, (right[j] - left[j]) * height[j]); 27 } 28 } 29 return res; 30 } 31 };
天雨虽宽,不润无根之草。
佛门虽广,不渡无缘之人。