Given a string S, find the longest palindromic substring in S. You may assume that the maximum length of S is 1000, and there exists one unique longest palindromic substring.
(1)
class Solution { public: string longestPalindrome(string s) { if (s == "") return ""; int l = s.length(), r[2100], maxID = 0, ID = 0, m = 0, i; string ss; ss.resize(l * 2 + 3); ss[0] = '@'; ss[1] = '#'; for (i = 0; i < l; i++) { ss[i * 2 + 2] = s[i]; ss[i * 2 + 3] = '#'; } ss[l * 2 + 2] = '\n'; l = l * 2 + 2; for (i = 2; i < l; i++) { if (maxID > i) r[i] = min(r[(ID << 1) - i], maxID - i); else r[i] = 1; while (ss[i + r[i]] == ss[i - r[i]]) r[i]++; if ((i + r[i] - 1) > maxID) { maxID = i + r[i] - 1; ID = i; } if (r[i] > r[m]) m = i; } return s.substr((m-r[m])>>1, r[m]-1); } };
(2)DP
string longestPalindrome_dp_opt_way(string s) { int n = s.size(); if (n<=1) return s; //Construct a matrix, and consdier matrix[j][i] as s[i] -> s[j] is Palindrome or not. // ------^^^^^^ // NOTE: it's [j][i] not [i][j] //Using vector could cause the `Time Limit Error` //So, use the native array bool **matrix = new bool* [n]; int start=0, len=0; // Dynamic Programming // 1) if i == j, then matrix[i][j] = true; // 2) if i != j, then matrix[i][j] = (s[i]==s[j] && matrix[i-1][j+1]) for (int i=0; i<n; i++){ matrix[i] = new bool[i+1]; memset(matrix[i], false, (i+1)*sizeof(bool)); matrix[i][i]=true; for (int j=0; j<i; j++){ // The following if statement can be broken to // 1) j==i, matrix[i][j] = true // 2) the length from j to i is 2 or 3, then, check s[i] == s[j] // 3) the length from j to i > 3, then, check s[i]==s[j] && matrix[i-1][j+1] if ( i==j || (s[j]==s[i] && (i-j<2 || matrix[i-1][j+1]) ) ) { matrix[i][j] = true; if (len < i-j+1){ start = j; len = i-j+1; } } } } for (int i=0; i<n; i++) { delete [] matrix[i]; } delete [] matrix; return s.substr(start, len); }