Write an efficient algorithm that searches for a value in an m x n matrix. This matrix has the following properties:
- Integers in each row are sorted from left to right.
- The first integer of each row is greater than the last integer of the previous row.
For example,
Consider the following matrix:
[ [1, 3, 5, 7], [10, 11, 16, 20], [23, 30, 34, 50] ]
Given target = 3
, return true
.
1.
转换成一位数组下标,二分查找。
bool searchMatrix01(vector<vector<int>>& matrix, int target) { int row = matrix.size(); int col = row>0 ? matrix[0].size() : 0; int len = row * col; int low = 0, high = len -1; while (low <= high) { int mid = low + (high - low) / 2; int r = mid / col; int c = mid % col; int n = matrix[r][c]; if (n == target) return true; if (n < target) low = mid+1; else high = mid -1; } return false; }
2.
行和列分别二分查找。
bool searchMatrix02(vector<vector<int> > &matrix, int target) { int idx = vertical_binary_search(matrix, target); if (idx<0){ return false; } idx = binary_search(matrix[idx], target); return (idx < 0 ? false : true); } int vertical_binary_search(vector< vector<int> > v, int key){ int low = 0; int high = v.size()-1; while(low <= high){ int mid = low + (high-low)/2; if (v[mid][0] == key){ return mid; } if (key < v[mid][0]){ high = mid - 1; continue; } if (key > v[mid][0]){ low = mid + 1; continue; } } return low-1; } int binary_search(vector<int> v, int key) { int low = 0; int high = v.size()-1; while(low <= high){ int mid = low + (high-low)/2; if (v[mid] == key){ return mid; } if (key < v[mid]){ high = mid - 1; continue; } if (key > v[mid]){ low = mid + 1; continue; } } return -1; }