[LeetCode] 64. Minimum Path Sum
Description
Given a \(m \times n\) grid filled with non-negative numbers, find a path from top left to bottom right which minimizes the sum of all numbers along its path.
Note: You can only move either down or right at any point in time.
Example:
Input:
[
[1,3,1],
[1,5,1],
[4,2,1]
]
Output: 7
Explanation: Because the path 1→3→1→1→1 minimizes the sum.
Analyse
和 [LeetCode] 62. Unique Paths
有点像,给出一个方格,从左上方走到右下方,但本题是要找到加权最短路径
动态规划
-
定义
dp[i][j]
为从(0, 0)走到(i, j)的加权最短路径 -
找出递推公式
有两种情况到达(i, j):
- 从(i-1, j)向下走了一步
- 从(i, j-1)向右走了一步
dp[i][j] = min(dp[i-1][j], dp[i, j-1]) + grid[i][j]
- 给出一些初值
在这题里是x轴和y轴边界上的值,如
[1,3,1] [1,4,5]
[1,5,1] -> [2, , ]
[4,2,1] [6, , ]
dp[0][0] = grid[0][0]
dp[i][0] = dp[i-1][0] + grid[i][0]
dp[0][j] = dp[0][j-1] + grid[0][j]
最终代码如下
int minPathSum(vector<vector<int>>& grid) {
if (grid.empty()) return 0;
int row = grid.size();
int col = grid[0].size();
vector<vector<int>> dp(row, vector<int>(col, 0));
dp[0][0] = grid[0][0];
for (int i = 1; i < row; i++) {
dp[i][0] = dp[i-1][0] + grid[i][0];
}
for (int j = 1; j < col; j++) {
dp[0][j] = dp[0][j-1] + grid[0][j];
}
for (int i = 1; i < row; i++) {
for (int j = 1; j < col; j++) {
dp[i][j] = min(dp[i-1][j], dp[i][j-1]) + grid[i][j];
}
}
return dp[row-1][col-1];
}