Cloth Simulation New Progress

2007年   <Efficient Simulation of Inextensible Cloth>

Abstract:

Many textiles do not noticeably stretch under their own weight. Unfortunately, for better performance many cloth solvers disregard this fact. We propose a method to obtain very low strain along the warp and weft direction using Constrained Lagrangian Mechanics and a novel fast projection method. The resulting algorithm acts as a velocity filter that easily integrates into existing simulation code.

---------------------------------------------------------------------------------------------------------------------------------

---------------------------------------------------------------------------------------------------------------------------------

2010年  <Multi-Resolution Cloth Simulation>

Abstract

We propose a novel, multi-resolution method to efficiently perform large-scale cloth simulation. Our cloth simulation method is based on a triangle-based energy model constructed from a cloth mesh. We identify that solutions of the linear system of cloth simulation are smooth in certain regions of the cloth mesh and solve the linear system on those regions in a reduced solution space. Then we reconstruct the original solutions by performing a simple interpolation from solutions computed in the reduced space. In order to identify regions where solutions are smooth, we propose simplification metrics that consider stretching, shear, and bending forces, as well as geometric collisions. Our multi-resolution method can be applied to many existing cloth simulation methods, since our method works on a general linear system. In order to demonstrate benefits of our method, we apply our method into four large-scale cloth benchmarks that consist of tens or hundreds of thousands of triangles. Because of the reduced computations, we achieve a performance improvement by a factor of up to one order of magnitude, with a little loss of simulation quality.

posted @ 2012-12-19 11:09  cgcaadcae  阅读(399)  评论(0编辑  收藏  举报