C++之Lambda研究
目录
目录 1
1. 前言 1
2. 示例1 1
3. 示例2 2
4. 示例3 3
5. 示例4 3
6. 示例5 6
7. 匿名类规则 6
8. 参考资料 7
1. 前言
本文代码测试环境为“GCC-9.1.0”,有关编译器的安装请参考《安装GCC-8.3.0及其依赖》,适用于“GCC-9.1.0”。
本文试图揭露Lambda背后一面,以方便更好的理解和掌握Lambda。Lambda代码段实际为一个编译器生成的类的“operator ()”函数,编译器会为每一个Lambda函数生成一个匿名的类(在C++中,类和结构体实际一样,无本质区别,除了默认的访问控制)。
对Lambda的最简单理解,是将它看作一个匿名类(或结构体),实际上也确实如此,编译器把Lambda编译成了匿名类。
2. 示例1
先看一段几乎最简单的Lambda代码:
// g++ -g -o a1 a1.cpp -std=c++11 #include <stdio.h> int main() { auto f = [] { printf("f\n"); }; // 注意“}”后的“;”必不可少,否则编译报错 return 0; } |
如果Lambda表达式(或函数)没有以“;”结尾,则编译时将报如下错误:
a3.cpp: In function 'int main()': a3.cpp:4:3: error: expected ',' or ';' before 'return' 4 | return 0; | ^~~~~~ |
Lambda之所以神奇,这得益于C++编译器的工作,上述“f”实际长这样:
type = struct <lambda()> { } |
一个匿名的类(或结构体),实际上还有一个成员函数“operator () const”。注意这里成员函数是”const”类型,这是默认的。如果需非”const”成员函数,需要加”mutable”修饰,如下所示:
auto f = [n]() mutable { printf("%d\n", n); }; |
上面例子对应的匿名类没有任何类数据成员,现在来个有类数据成员的代码:
// g++ -g -o a1 a1.cpp -std=c++11 #include <stdio.h> int main() { int n = 3; auto f = [n] { printf("%d\n", n); }; f(); // 这里实际调用的是匿名类的成员函数“operator ()” return 0; } |
这时,“f”实际长这样,它是一个含有类数据成员的匿名类,而不再是空无一特的类:
type = struct <lambda()> { int __n; } |
3. 示例2
继续来个变种:
// g++ -g -o a1 a1.cpp -std=c++11 #include <stdio.h> int main() { int n = 3; auto f = [&n]() mutable { printf("%d\n", n); }; f(); return 0; } |
这时,“f”实际长这样,一个包含了引用类型的匿名类:
type = struct <lambda()> { int &__n; } |
4. 示例3
继续变种,“&”的作用让Lambda函数可使用Lambda所在作用域内所有可见的局部变量(包括Lambda所在类的this),并且是以引用传递方式:
// g++ -g -o a1 a1.cpp -std=c++11 #include <stdio.h> int main() { int n = 3; auto f = [&]() mutable { printf("%d\n", n); }; f(); return 0; } |
“f”实际长这样:
type = struct <lambda()> { int &__n; } |
变稍复杂一点:
// g++ -g -o a1 a1.cpp -std=c++11 #include <stdio.h> int main() { int n = 3; int m = 5; auto f = [&]() mutable { printf("%d\n", n); }; f(); return 0; } |
可以看到,“f”并没有发生变化:
type = struct <lambda()> { int &__n; } |
5. 示例4
继续增加复杂度:
// g++ -g -o a1 a1.cpp -std=c++11 #include <stdio.h> int main() { int n = 3; int m = 5; auto f = [&]() mutable { printf("%d,%d\n", n, m); }; f(); return 0; } |
可以看到“f”变了:
type = struct <lambda()> { int &__n; int &__m; } |
从上面不难看出,编译器只会把Lambda函数用到的变量打包进对应的匿名类。继续一个稍复杂点的:
// g++ -g -o a1 a1.cpp -std=c++11 #include <stdio.h> struct X { void foo() { printf("foo\n"); } void xoo() { auto f = [&] { foo(); }; f(); } }; int main() { X().xoo(); return 0; } |
这时,“f”实际长这样:
type = struct X::<lambda()> { X * const __this; // X类型的指针(非对象) } |
如果将“auto f = [&] { foo(); };”中的“&”去掉,则会遇到编译错误,提示“this”没有被Lambda函数捕获:
a2.cpp: In lambda function: a2.cpp:5:23: error: 'this' was not captured for this lambda function 5 | auto f = [] { foo(); }; | ^ a2.cpp:5:23: error: cannot call member function 'void X::foo()' without object |
改成下列方式捕获也是可以的:
// g++ -g -o a1 a1.cpp -std=c++11 #include <stdio.h> struct X { void foo() { printf("foo\n"); } void xoo() { auto f = [this] { foo(); }; f(); } }; int main() { X().xoo(); return 0; } |
如果是C++17,还可以这样:
// g++ -g -o a1 a1.cpp -std=c++17 #include <stdio.h> struct X { void foo() { printf("foo\n"); } void xoo() { auto f = [*this]() mutable { foo(); }; f(); } }; int main() { X().xoo(); return 0; } |
注意得有“mutable”修饰,不然报如下编译错误:
a2.cpp: In lambda function: a2.cpp:5:30: error: passing 'const X' as 'this' argument discards qualifiers [-fpermissive] 5 | auto f = [*this]() { foo(); }; | ^ a2.cpp:3:8: note: in call to 'void X::foo()' 3 | void foo() { printf("foo\n"); } | ^~~ |
也可以这样:
// g++ -g -o a1 a1.cpp -std=c++17 #include <stdio.h> struct X { void foo() { printf("foo\n"); } void xoo() { auto f = [&,*this]() mutable { foo(); }; f(); } }; int main() { X().xoo(); return 0; } |
使用“*this”时的“f”样子如下:
type = struct X::<lambda()> { X __this; // X类型的对象(非指针) } |
6. 示例5
继续研究,使用C++ RTTI(Run-Time Type Identification,运行时类型识别)设施“typeid”查看Lambda函数:
// g++ -g -o a1 a1.cpp -std=c++11 #include <stdio.h> #include <typeinfo> struct X { void xoo() { auto f = [] { printf("f\n"); }; printf("%s\n", typeid(f).name()); // 注:typeid返回值类型为“std::type_info” } }; int main() { X().xoo(); return 0; } |
运行输出:
ZN1X3xooEvEUlvE_ |
7. 匿名类规则
编译器为Lambda生成的匿名类规则(不同标准有区别):
构造函数 拷贝构造函数 |
ClosureType() = delete; |
C++14前 |
ClosureType() = default; |
C++20起, 仅当未指定任何俘获时 |
|
ClosureType(const ClosureType& ) = default; |
C++14起 |
|
ClosureType(ClosureType&& ) = default; |
C++14起 |
|
拷贝复制函数 |
ClosureType& operator=(const ClosureType&) = delete; |
C++20前 |
ClosureType& operator=(const ClosureType&) = default; ClosureType& operator=(ClosureType&&) = default; |
C++20起, 仅当未指定任何俘获时 |
|
ClosureType& operator=(const ClosureType&) = delete; |
C++20起,其他情况 |
|
析构函数 |
~ClosureType() = default; |
析构函数是隐式声明的 |
对于标记为“delete”的函数是不能调用的,如下列代码中的“f2 = f1;”将触发编译错误:
int main() { auto f1 = []{}; auto f2 = f1; f2 = f1; return 0; } |
上列代码在C++11、C++14和C++17均会报错。不过如规则所示,C++20(含C++2a)上则可以正常编译:
a3.cpp: In function 'int main()': a3.cpp:4:8: error: use of deleted function 'main()::<lambda()>& main()::<lambda()>::operator=(const main()::<lambda()>&)' 4 | f2 = f1; | ^~ a3.cpp:2:14: note: a lambda closure type has a deleted copy assignment operator 2 | auto f1 = []{}; | ^ |
希望通过本文,对理解Lambda有所帮助。
8. 参考资料
1) https://zh.cppreference.com/w/cpp/language/lambda
2) https://docs.microsoft.com/en-us/cpp/cpp/lambda-expressions-in-cpp?view=vs-2019
3) https://en.cppreference.com/w/cpp/language/lambda
4) https://stackoverflow.com/questions/7627098/what-is-a-lambda-expression-in-c11
5) https://www.cprogramming.com/c++11/c++11-lambda-closures.html