LiveWriter测试

66b3de17gw1dvvff75thcj

# -*- coding: utf-8 -*-
'''
Created on May 19, 2012

@author: Edison
'''

from math import sqrt

# A dictionary of movie critics and their ratings of a small
# set of movies
critics={'Lisa Rose': {'Lady in the Water': 2.5, 'Snakes on a Plane': 3.5,
 'Just My Luck': 3.0, 'Superman Returns': 3.5, 'You, Me and Dupree': 2.5,
 'The Night Listener': 3.0},
'Gene Seymour': {'Lady in the Water': 3.0, 'Snakes on a Plane': 3.5,
 'Just My Luck': 1.5, 'Superman Returns': 5.0, 'The Night Listener': 3.0,
 'You, Me and Dupree': 3.5},
'Michael Phillips': {'Lady in the Water': 2.5, 'Snakes on a Plane': 3.0,
 'Superman Returns': 3.5, 'The Night Listener': 4.0},
'Claudia Puig': {'Snakes on a Plane': 3.5, 'Just My Luck': 3.0,
 'The Night Listener': 4.5, 'Superman Returns': 4.0,
 'You, Me and Dupree': 2.5},
'Mick LaSalle': {'Lady in the Water': 3.0, 'Snakes on a Plane': 4.0,
 'Just My Luck': 2.0, 'Superman Returns': 3.0, 'The Night Listener': 3.0,
 'You, Me and Dupree': 2.0},
'Jack Matthews': {'Lady in the Water': 3.0, 'Snakes on a Plane': 4.0,
 'The Night Listener': 3.0, 'Superman Returns': 5.0, 'You, Me and Dupree': 3.5},
'Toby': {'Snakes on a Plane':4.5,'You, Me and Dupree':1.0,'Superman Returns':4.0}}

# Returns a distance-based similarity score for person1 and person2
def sim_distance(prefs,person1,person2):
    # Get the list of shared_items
    si={}
    for item in prefs[person1]:
        if item in prefs[person2]:
            si[item]=1
    # if they have no ratings in common, return 0
    if len(si)==0: return 0
    # Add up the squares of all the differences
    sum_of_squares=sum([pow(prefs[person1][item]-prefs[person2][item],2) 
                        for item in prefs[person1] if item in prefs[person2]])
    return 1/(1+sum_of_squares)

# Returns the Pearson correlation coefficient for p1 and p2
def sim_pearson(prefs, p1, p2):
    # Get the list of mutually rated items
    si = {}
    for item in prefs[p1]:
        if item in prefs[p2]: si[item] = 1
    # Find the number of elements
    n = len(si)
    # if they are no ratings in common, return 0
    if n == 0: return 0
    # Add up all the preferences
    sum1 = sum([prefs[p1][it] for it in si])
    sum2 = sum([prefs[p2][it] for it in si])
    # Sum up the squares
    sum1Sq = sum([pow(prefs[p1][it], 2) for it in si])
    sum2Sq = sum([pow(prefs[p2][it], 2) for it in si])
    # Sum up the products
    pSum = sum([prefs[p1][it] * prefs[p2][it] for it in si])
    
    # Calculate Pearson score
    num=pSum-(sum1*sum2/n)
    den=sqrt((sum1Sq-pow(sum1,2)/n)*(sum2Sq-pow(sum2,2)/n))
    if den==0: return 0
    
    r = num/den
    return r

if __name__ == "__main__":
    #print sim_distance(critics, 'Lisa Rose', 'Jack Matthews')
    import pickle
    name = u'乔治克鲁尼'
    sex = u'男'
    print name.encode('utf-8')
    my_dict = {}
    my_dict[name.encode('utf-8')] = sex
    for key in my_dict:
        print key
    print my_dict       
   
    
posted @ 2012-09-23 11:11  莫忆往西  阅读(177)  评论(0编辑  收藏  举报