# -*- coding: utf-8 -*-
'''
Created on May 19, 2012
@author: Edison
'''
from math import sqrt
# A dictionary of movie critics and their ratings of a small
# set of movies
critics={'Lisa Rose': {'Lady in the Water': 2.5, 'Snakes on a Plane': 3.5,
'Just My Luck': 3.0, 'Superman Returns': 3.5, 'You, Me and Dupree': 2.5,
'The Night Listener': 3.0},
'Gene Seymour': {'Lady in the Water': 3.0, 'Snakes on a Plane': 3.5,
'Just My Luck': 1.5, 'Superman Returns': 5.0, 'The Night Listener': 3.0,
'You, Me and Dupree': 3.5},
'Michael Phillips': {'Lady in the Water': 2.5, 'Snakes on a Plane': 3.0,
'Superman Returns': 3.5, 'The Night Listener': 4.0},
'Claudia Puig': {'Snakes on a Plane': 3.5, 'Just My Luck': 3.0,
'The Night Listener': 4.5, 'Superman Returns': 4.0,
'You, Me and Dupree': 2.5},
'Mick LaSalle': {'Lady in the Water': 3.0, 'Snakes on a Plane': 4.0,
'Just My Luck': 2.0, 'Superman Returns': 3.0, 'The Night Listener': 3.0,
'You, Me and Dupree': 2.0},
'Jack Matthews': {'Lady in the Water': 3.0, 'Snakes on a Plane': 4.0,
'The Night Listener': 3.0, 'Superman Returns': 5.0, 'You, Me and Dupree': 3.5},
'Toby': {'Snakes on a Plane':4.5,'You, Me and Dupree':1.0,'Superman Returns':4.0}}
# Returns a distance-based similarity score for person1 and person2
def sim_distance(prefs,person1,person2):
# Get the list of shared_items
si={}
for item in prefs[person1]:
if item in prefs[person2]:
si[item]=1
# if they have no ratings in common, return 0
if len(si)==0: return 0
# Add up the squares of all the differences
sum_of_squares=sum([pow(prefs[person1][item]-prefs[person2][item],2)
for item in prefs[person1] if item in prefs[person2]])
return 1/(1+sum_of_squares)
# Returns the Pearson correlation coefficient for p1 and p2
def sim_pearson(prefs, p1, p2):
# Get the list of mutually rated items
si = {}
for item in prefs[p1]:
if item in prefs[p2]: si[item] = 1
# Find the number of elements
n = len(si)
# if they are no ratings in common, return 0
if n == 0: return 0
# Add up all the preferences
sum1 = sum([prefs[p1][it] for it in si])
sum2 = sum([prefs[p2][it] for it in si])
# Sum up the squares
sum1Sq = sum([pow(prefs[p1][it], 2) for it in si])
sum2Sq = sum([pow(prefs[p2][it], 2) for it in si])
# Sum up the products
pSum = sum([prefs[p1][it] * prefs[p2][it] for it in si])
# Calculate Pearson score
num=pSum-(sum1*sum2/n)
den=sqrt((sum1Sq-pow(sum1,2)/n)*(sum2Sq-pow(sum2,2)/n))
if den==0: return 0
r = num/den
return r
if __name__ == "__main__":
#print sim_distance(critics, 'Lisa Rose', 'Jack Matthews')
import pickle
name = u'乔治克鲁尼'
sex = u'男'
print name.encode('utf-8')
my_dict = {}
my_dict[name.encode('utf-8')] = sex
for key in my_dict:
print key
print my_dict