[LeetCode]102. Product of Array Except Self数组乘积
Given an array of n integers where n > 1, nums
, return an array output
such that output[i]
is equal to the product of all the elements of nums
except nums[i]
.
Solve it without division and in O(n).
For example, given [1,2,3,4]
, return [24,12,8,6]
.
Follow up:
Could you solve it with constant space complexity? (Note: The output array does not count as extra space for the purpose of space complexity analysis.)
Subscribe to see which companies asked this question
解法1:不考虑常数空间复杂度,设置两个辅助数组,扫描两次数组,分别保存当前值左边所有数的乘积和右边所有数的乘积。最后再循坏一遍,将两个辅助数组对应位置相乘即为输出。
class Solution { public: vector<int> productExceptSelf(vector<int>& nums) { int n = nums.size(); vector<int> leftPro(n, 1), rightPro(n, 1), output(n, 0); for (int i = 1; i < n; ++i) leftPro[i] = leftPro[i - 1] * nums[i - 1]; for (int i = n - 2; i >= 0; --i) rightPro[i] = rightPro[i + 1] * nums[i + 1]; for (int i = 0; i < n; ++i) output[i] = leftPro[i] * rightPro[i]; return output; } };
解法2:要压缩空间复杂度至常数,而输出数组不计入在内,可以利用输出数组先保存leftPro或者rightPro中的一个,然后再扫描数组,将相应位置乘上rightPro/leftPro即可。
class Solution { public: vector<int> productExceptSelf(vector<int>& nums) { int n = nums.size(), rightPro = 1; vector<int> output(n, 1); for (int i = 1; i < n; ++i) output[i] = output[i - 1] * nums[i - 1]; for (int i = n - 2; i >= 0; --i) { rightPro *= nums[i + 1]; output[i] *= rightPro; } return output; } };