SCALAsparkSQL

1.sparkSQL

import org.apache.spark.sql.catalyst.encoders.ExpressionEncoder
import org.apache.spark.sql.Encoder
import org.apache.spark.sql.Row
import org.apache.spark.sql.SparkSession
import org.apache.spark.sql.types._

object SparkSQLExample {
  // Note: Case classes in Scala 2.10 can support only up to 22 fields. To work around this limit,
  // you can use custom classes that implement the Product interface
  case class Person(name: String, age: Long)

  def main(args: Array[String]):Unit = {
    val spark = SparkSession
      .builder()
      .master("local")
      .appName("Spark SQL basic example")
      .config("spark.some.config.option", "some-value")
      .getOrCreate()

    // For implicit conversions like converting RDDs to DataFrames
    import spark.implicits._
    // $example off:init_session$

    runBasicDataFrameExample(spark)
    runDatasetCreationExample(spark)
    runInferSchemaExample(spark)
    runProgrammaticSchemaExample(spark)

    spark.stop()
  }

  private def runBasicDataFrameExample(spark: SparkSession): Unit = {
    // $example on:create_df$
    val df = spark.read.json("people.json")

    // Displays the content of the DataFrame to stdout
    df.show()
    // +----+-------+
    // | age|   name|
    // +----+-------+
    // |null|Michael|
    // |  30|   Andy|
    // |  19| Justin|
    // +----+-------+
    // $example off:create_df$

    // $example on:untyped_ops$
    // This import is needed to use the $-notation
    import spark.implicits._
    // Print the schema in a tree format
    df.printSchema()
    // root
    // |-- age: long (nullable = true)
    // |-- name: string (nullable = true)

    // Select only the "name" column
    df.select("name").show()
    // +-------+
    // |   name|
    // +-------+
    // |Michael|
    // |   Andy|
    // | Justin|
    // +-------+

    // Select everybody, but increment the age by 1
    df.select($"name", $"age" + 1).show()
    // +-------+---------+
    // |   name|(age + 1)|
    // +-------+---------+
    // |Michael|     null|
    // |   Andy|       31|
    // | Justin|       20|
    // +-------+---------+

    // Select people older than 21
    df.filter($"age" > 21).show()
    // +---+----+
    // |age|name|
    // +---+----+
    // | 30|Andy|
    // +---+----+

    // Count people by age
    df.groupBy("age").count().show()
    // +----+-----+
    // | age|count|
    // +----+-----+
    // |  19|    1|
    // |null|    1|
    // |  30|    1|
    // +----+-----+
    // $example off:untyped_ops$

    // $example on:run_sql$
    // Register the DataFrame as a SQL temporary view
    df.createOrReplaceTempView("people")

    val sqlDF = spark.sql("SELECT * FROM people")
    sqlDF.show()
    // +----+-------+
    // | age|   name|
    // +----+-------+
    // |null|Michael|
    // |  30|   Andy|
    // |  19| Justin|
    // +----+-------+
    // $example off:run_sql$
  }

  private def runDatasetCreationExample(spark: SparkSession): Unit = {
    import spark.implicits._
    // $example on:create_ds$
    // Encoders are created for case classes
    val caseClassDS = Seq(Person("Andy", 32)).toDS()
    caseClassDS.show()
    // +----+---+
    // |name|age|
    // +----+---+
    // |Andy| 32|
    // +----+---+

    // Encoders for most common types are automatically provided by importing spark.implicits._
    val primitiveDS = Seq(1, 2, 3).toDS()
    primitiveDS.map(_ + 1).collect() // Returns: Array(2, 3, 4)

    // DataFrames can be converted to a Dataset by providing a class. Mapping will be done by name
    val path = "people.json"
    val peopleDS = spark.read.json(path).as[Person]
    peopleDS.show()
    // +----+-------+
    // | age|   name|
    // +----+-------+
    // |null|Michael|
    // |  30|   Andy|
    // |  19| Justin|
    // +----+-------+
    // $example off:create_ds$
  }

  private def runInferSchemaExample(spark: SparkSession): Unit = {
    // $example on:schema_inferring$
    // For implicit conversions from RDDs to DataFrames
    import spark.implicits._

    // Create an RDD of Person objects from a text file, convert it to a Dataframe
    val peopleDF = spark.sparkContext
      .textFile("people.txt")
      .map(_.split(","))
      .map(attributes => Person(attributes(0), attributes(1).trim.toInt))
      .toDF()
    // Register the DataFrame as a temporary view
    peopleDF.createOrReplaceTempView("people")

    // SQL statements can be run by using the sql methods provided by Spark
    val teenagersDF = spark.sql("SELECT name, age FROM people WHERE age BETWEEN 13 AND 19")

    // The columns of a row in the result can be accessed by field index
    teenagersDF.map(teenager => "Name: " + teenager(0)).show()
    // +------------+
    // |       value|
    // +------------+
    // |Name: Justin|
    // +------------+

    // or by field name
    teenagersDF.map(teenager => "Name: " + teenager.getAs[String]("name")).show()
    // +------------+
    // |       value|
    // +------------+
    // |Name: Justin|
    // +------------+

    // No pre-defined encoders for Dataset[Map[K,V]], define explicitly
    implicit val mapEncoder = org.apache.spark.sql.Encoders.kryo[Map[String, Any]]
    // Primitive types and case classes can be also defined as
    // implicit val stringIntMapEncoder: Encoder[Map[String, Any]] = ExpressionEncoder()

    // row.getValuesMap[T] retrieves multiple columns at once into a Map[String, T]
    teenagersDF.map(teenager => teenager.getValuesMap[Any](List("name", "age"))).collect()
    // Array(Map("name" -> "Justin", "age" -> 19))
    // $example off:schema_inferring$
  }

  private def runProgrammaticSchemaExample(spark: SparkSession): Unit = {
    import spark.implicits._
    // $example on:programmatic_schema$
    // Create an RDD
    val peopleRDD = spark.sparkContext.textFile("people.txt")

    // The schema is encoded in a string
    val schemaString = "name age"

    // Generate the schema based on the string of schema
    val fields = schemaString.split(" ")
      .map(fieldName => StructField(fieldName, StringType, nullable = true))
    val schema = StructType(fields)

    // Convert records of the RDD (people) to Rows
    val rowRDD = peopleRDD
      .map(_.split(","))
      .map(attributes => Row(attributes(0), attributes(1).trim))

    // Apply the schema to the RDD
    val peopleDF = spark.createDataFrame(rowRDD, schema)

    // Creates a temporary view using the DataFrame
    peopleDF.createOrReplaceTempView("people")

    // SQL can be run over a temporary view created using DataFrames
    val results = spark.sql("SELECT name FROM people")

    // The results of SQL queries are DataFrames and support all the normal RDD operations
    // The columns of a row in the result can be accessed by field index or by field name
    results.map(attributes => "Name: " + attributes(0)).show()
    // +-------------+
    // |        value|
    // +-------------+
    // |Name: Michael|
    // |   Name: Andy|
    // | Name: Justin|
    // +-------------+
    // $example off:programmatic_schema$
  }
}

 

2.SQL查询

import org.apache.spark.sql.SparkSession

object SQLDataSourceExample {

  case class Person(name: String, age: Long)

  def main(args: Array[String]) {
    val spark = SparkSession
      .builder()
      .master("local")
      .appName("Spark SQL data sources example")
      .config("spark.some.config.option", "some-value")
      .getOrCreate()

    runBasicDataSourceExample(spark)
    runBasicParquetExample(spark)
    runParquetSchemaMergingExample(spark)
    runJsonDatasetExample(spark)
    //runJdbcDatasetExample(spark)

    spark.stop()
  }

  private def runBasicDataSourceExample(spark: SparkSession): Unit = {
    // $example on:generic_load_save_functions$
    val usersDF = spark.read.load("users.parquet")
    usersDF.select("name", "favorite_color").write.save("namesAndFavColors.parquet")
    // $example off:generic_load_save_functions$
    // $example on:manual_load_options$
    val peopleDF = spark.read.format("json").load("people.json")
    peopleDF.select("name", "age").write.format("parquet").save("namesAndAges.parquet")
    // $example off:manual_load_options$
    // $example on:direct_sql$
    val sqlDF = spark.sql("SELECT * FROM parquet.`users.parquet`")
    // $example off:direct_sql$
  }

  private def runBasicParquetExample(spark: SparkSession): Unit = {
    // $example on:basic_parquet_example$
    // Encoders for most common types are automatically provided by importing spark.implicits._
    import spark.implicits._

    val peopleDF = spark.read.json("people.json")

    // DataFrames can be saved as Parquet files, maintaining the schema information
    peopleDF.write.parquet("people.parquet")

    // Read in the parquet file created above
    // Parquet files are self-describing so the schema is preserved
    // The result of loading a Parquet file is also a DataFrame
    val parquetFileDF = spark.read.parquet("people.parquet")

    // Parquet files can also be used to create a temporary view and then used in SQL statements
    parquetFileDF.createOrReplaceTempView("parquetFile")
    val namesDF = spark.sql("SELECT name FROM parquetFile WHERE age BETWEEN 13 AND 19")
    namesDF.map(attributes => "Name: " + attributes(0)).show()
    // +------------+
    // |       value|
    // +------------+
    // |Name: Justin|
    // +------------+
    // $example off:basic_parquet_example$
  }

  private def runParquetSchemaMergingExample(spark: SparkSession): Unit = {
    // $example on:schema_merging$
    // This is used to implicitly convert an RDD to a DataFrame.
    import spark.implicits._

    // Create a simple DataFrame, store into a partition directory
    val squaresDF = spark.sparkContext.makeRDD(1 to 5).map(i => (i, i * i)).toDF("value", "square")
    squaresDF.write.parquet("data/test_table/key=1")

    // Create another DataFrame in a new partition directory,
    // adding a new column and dropping an existing column
    val cubesDF = spark.sparkContext.makeRDD(6 to 10).map(i => (i, i * i * i)).toDF("value", "cube")
    cubesDF.write.parquet("data/test_table/key=2")

    // Read the partitioned table
    val mergedDF = spark.read.option("mergeSchema", "true").parquet("data/test_table")
    mergedDF.printSchema()

    // The final schema consists of all 3 columns in the Parquet files together
    // with the partitioning column appeared in the partition directory paths
    // root
    //  |-- value: int (nullable = true)
    //  |-- square: int (nullable = true)
    //  |-- cube: int (nullable = true)
    //  |-- key: int (nullable = true)
    // $example off:schema_merging$
  }

  private def runJsonDatasetExample(spark: SparkSession): Unit = {
    // $example on:json_dataset$
    // A JSON dataset is pointed to by path.
    // The path can be either a single text file or a directory storing text files
    val path = "people.json"
    val peopleDF = spark.read.json(path)

    // The inferred schema can be visualized using the printSchema() method
    peopleDF.printSchema()
    // root
    //  |-- age: long (nullable = true)
    //  |-- name: string (nullable = true)

    // Creates a temporary view using the DataFrame
    peopleDF.createOrReplaceTempView("people")

    // SQL statements can be run by using the sql methods provided by spark
    val teenagerNamesDF = spark.sql("SELECT name FROM people WHERE age BETWEEN 13 AND 19")
    teenagerNamesDF.show()
    // +------+
    // |  name|
    // +------+
    // |Justin|
    // +------+

    // Alternatively, a DataFrame can be created for a JSON dataset represented by
    // an RDD[String] storing one JSON object per string
    val otherPeopleRDD = spark.sparkContext.makeRDD(
      """{"name":"Yin","address":{"city":"Columbus","state":"Ohio"}}""" :: Nil)
    val otherPeople = spark.read.json(otherPeopleRDD)
    otherPeople.show()
    // +---------------+----+
    // |        address|name|
    // +---------------+----+
    // |[Columbus,Ohio]| Yin|
    // +---------------+----+
    // $example off:json_dataset$
  }

  private def runJdbcDatasetExample(spark: SparkSession): Unit = {
    // $example on:jdbc_dataset$
    val jdbcDF = spark.read
      .format("jdbc")
      .option("url", "jdbc:postgresql:dbserver")
      .option("dbtable", "schema.tablename")
      .option("user", "username")
      .option("password", "password")
      .load()
    // $example off:jdbc_dataset$
  }
}

 

 

 

 

 

 

 

 

posted @ 2017-12-25 00:00  appointint  阅读(262)  评论(0编辑  收藏  举报