streaming操作滑动窗口

开两个命令行窗口:

服务端:nc –lp 8888

//客户端:nc localhost 8888

 

在默认情况下,Spark应用程序的日志级别是INFO的,我们可以自定义Spark应用程序的日志输出级别,可以到$SPARK_HOME/conf/log4j.properties文件里面进行修改:

 

DStream操作:

一、转换操作(惰性求值)

1、 无状态转换:每个批次的处理不依赖之前批次的数据

2、 有状态转换:使用之前批次的数据或者是中间结果来计算当前批次数据

1)、基于滑动窗口

2)、追踪状态变化

二、输出操作(触发之前的转换操作)

批次间隔

窗口时长(必须为批次间隔的整数倍)

滑动步长(必须为批次间隔的整数倍,默认值就等于窗口时长)

 

使用nc工具

nc -lp 9999

 

 

 

 

创建streaming程序

import org.apache.spark.SparkConf;  
import org.apache.spark.api.java.JavaPairRDD;  
import org.apache.spark.api.java.JavaRDD;  
import org.apache.spark.api.java.JavaSparkContext;  
import org.apache.spark.api.java.function.FlatMapFunction;  
import org.apache.spark.api.java.function.Function2;  
import org.apache.spark.api.java.function.PairFunction;  
import org.apache.spark.streaming.Duration;
import org.apache.spark.streaming.api.java.JavaDStream;
import org.apache.spark.streaming.api.java.JavaPairDStream;
import org.apache.spark.streaming.api.java.JavaStreamingContext;

import scala.Tuple2;  
  

import java.util.Arrays;  
import java.util.Iterator;

public class SparkStreamWC {
	   public static void main(String[] args) {
		   //专门分出去的task去取数据来执行(“local[4]”),至少为2,多个线程
	        SparkConf conf = new SparkConf().setMaster("local[4]").setAppName("wordcount").set("spark.testing.memory", "2147480000");
	        //设置时间间隔为3s
	        JavaStreamingContext jssc = new JavaStreamingContext(conf, new Duration(3000));
	        //设置服务器端口,从9999端口取数据                           nc -lp localhost
	        JavaDStream<String> lines = jssc.socketTextStream("localhost", 9999);
	        jssc.sparkContext().setLogLevel("WARN");
	        //JavaSparkContext ctx = new JavaSparkContext(conf);
	        //使用DStream离散化流
	        JavaDStream<String> words = lines.flatMap(new FlatMapFunction<String, String>() {
	            @Override
	            public Iterator<String> call(String s) throws Exception {
	            	System.out.println(s);
	                return Arrays.asList(s.split(" ")).iterator();
	            }
	        });

	        JavaPairDStream<String, Integer> ones = words.mapToPair(new PairFunction<String, String, Integer>() {  
	            @Override  
	            public Tuple2<String, Integer> call(String s) throws Exception {  
	                return new Tuple2<String, Integer>(s, 1);  
	            }  
	        });  

	        JavaPairDStream<String, Integer> counts = ones.reduceByKey(new Function2<Integer, Integer, Integer>() {  
	            @Override  
	            public Integer call(Integer integer, Integer integer2) throws Exception {  
	                return integer + integer2;  
	            }  
	        });  
	  
	        counts.print();                    //延迟操作
	        
	        jssc.start();                      //开启应用
	        try {
				jssc.awaitTermination();          //阻塞,等待作业完成
			} catch (InterruptedException e) {
				e.printStackTrace();
			} 
	    }      
}

reduceByKeyAndWindow


import org.apache.spark.SparkConf;  
import org.apache.spark.api.java.JavaPairRDD;  
import org.apache.spark.api.java.JavaRDD;  
import org.apache.spark.api.java.JavaSparkContext;  
import org.apache.spark.api.java.function.FlatMapFunction;  
import org.apache.spark.api.java.function.Function2;  
import org.apache.spark.api.java.function.PairFunction;  
import org.apache.spark.streaming.Duration;
import org.apache.spark.streaming.api.java.JavaDStream;
import org.apache.spark.streaming.api.java.JavaPairDStream;
import org.apache.spark.streaming.api.java.JavaStreamingContext;

import scala.Tuple2;  
  

import java.util.Arrays;  
import java.util.Iterator;

public class WC_Stream_Window {
	   public static void main(String[] args) {
	        SparkConf conf = new SparkConf().setMaster("local[4]").setAppName("wordcount").set("spark.testing.memory", "2147480000");
	        //批次间隔1秒
	        JavaStreamingContext jssc = new JavaStreamingContext(conf, new Duration(1000));
	        jssc.sparkContext().setLogLevel("WARN");
	        jssc.checkpoint("file:///d:/checkpoint");
	        JavaDStream<String> lines = jssc.socketTextStream("localhost", 9999);
	        //JavaDStream<String> lines = jssc.textFileStream("file:///F:/workspace/PartitionDemo/src/bigdata12_1103");
	        //窗口时长6秒,滑动步长3秒,每次计算6个批次的窗口,每四个批次计算一次
	        //lines = lines.window(new Duration(6000), new Duration(3000));
	        //窗口时长6秒,滑动步长4秒
	        //lines = lines.window(new Duration(6000), new Duration(4000));

	        JavaDStream<String> words = lines.flatMap(new FlatMapFunction<String, String>() {
	            @Override
	            public Iterator<String> call(String s) throws Exception {
	            	System.out.println("flatMap:" + s);
	                return Arrays.asList(s.split(" ")).iterator();
	            }
	        });
	        JavaPairDStream<String, Integer> ones = words.mapToPair(s->new Tuple2<String, Integer>(s, 1));  

	        //在整个窗口上执行规约   与上面的滑动窗口是相同的效果  (6000,4000)有重复数据    (4000,4000)就能够没有重复数据
//	        JavaPairDStream<String, Integer> counts = ones.reduceByKeyAndWindow(
//	        		                          (x, y) ->{
//	        		                        	  System.out.println("规约数据。。。");
//	        	                                  return x + y;
//	        	                              }, 
//	        		                          new Duration(6000), new Duration(4000));

	        //只考虑新进入窗口的数据,和离开窗口的数据,增量计算规约结果   
	        //减去了离开窗口的数据 
	        //避免反复计算重复的数据
	        JavaPairDStream<String, Integer> counts = ones.reduceByKeyAndWindow(
											        		(x, y) -> x + y, 
											        		(x, y) -> x - y,
											        		new Duration(6000),
											        		new Duration(4000));

//	        JavaPairDStream<String, Integer> counts = ones.reduceByKey(
//	        		                   (x, y)->{
//	        		                       System.out.println("规约数据: x:" + x + " y:" + y);
//	        		                       return x + y;
//	        		                   }
//	        		               );

	        counts.print();
	        
	        jssc.start();
	        try {
				jssc.awaitTermination();
			} catch (InterruptedException e) {
				e.printStackTrace();
			} 
	        jssc.close();
	    }
}

 

此处举例:

使用reduceByKeyAndWindow设置窗口时长和滑动步长。窗口时长为6个批次,滑动步长为个批次,每隔4个批次就对前6个批次的数据进行处理。(每隔4000s就对前6000s的数据进行处理)

 

 

使用UpdateStateByKey

import java.util.Arrays;
import java.util.Iterator;
import java.util.List;

import org.apache.spark.SparkConf;
import org.apache.spark.api.java.Optional;
import org.apache.spark.api.java.function.FlatMapFunction;
import org.apache.spark.api.java.function.Function2;
import org.apache.spark.api.java.function.PairFunction;
import org.apache.spark.streaming.Duration;
import org.apache.spark.streaming.api.java.JavaDStream;
import org.apache.spark.streaming.api.java.JavaPairDStream;
import org.apache.spark.streaming.api.java.JavaReceiverInputDStream;
import org.apache.spark.streaming.api.java.JavaStreamingContext;

import scala.Tuple2;

public class UpdateStateByKeyDemo {
	@SuppressWarnings("serial")
	public static void main(String[] args) {
		SparkConf conf = new SparkConf().setMaster("local[2]")
				                        .setAppName("UpdateStateByKeyDemo").set("spark.testing.memory", "2147480000");

		JavaStreamingContext jsc = new JavaStreamingContext(conf, new Duration(500));
		jsc.sparkContext().setLogLevel("WARN");
		jsc.checkpoint("file:///d:/checkpoint");            //不设目录会报错

		JavaReceiverInputDStream<String> lines = jsc.socketTextStream("localhost", 9999);
		//窗口时长6秒,滑动步长3秒,每次计算6个批次的窗口,每四个批次计算一次
        //lines = lines.window(new Duration(6000), new Duration(3000));
        //窗口时长6秒,滑动步长4秒
        //lines = lines.window(new Duration(6000), new Duration(4000));
		
			JavaDStream<String> words = lines.flatMap(new FlatMapFunction<String, String>() { 
				@Override
				public Iterator<String> call(String line) throws Exception {
				    return Arrays.asList(line.split(" ")).iterator();
				}
			});

		JavaPairDStream<String, Integer> pairs = words.mapToPair(new PairFunction<String, String, Integer>() {
			@Override
			public Tuple2<String, Integer> call(String word) throws Exception {
				return new Tuple2<String, Integer>(word, 1);
			}
		});
		
		/*
		      *在这里是通过updateStateByKey来以Batch Interval为单位来对历史状态进行更新,
		      * 这是功能上的一个非常大的改进,否则的话需要完成同样的目的,就可能需要把数据保存在Redis、
		      * Tagyon或者HDFS或者HBase或者数据库中来不断的完成同样一个key的State更新,如果你对性能有极为苛刻的要求,
		      * 且数据量特别大的话,可以考虑把数据放在分布式的Redis或者Tachyon内存文件系统中;
		 */
		JavaPairDStream<String, Integer> wordsCount = pairs.updateStateByKey(
			new Function2<List<Integer>, Optional<Integer>, Optional<Integer>>() {
				@Override
				public Optional<Integer> call(List<Integer> values, Optional<Integer> state)
						                              throws Exception {
					Integer updatedValue = 0 ;
					if(state.isPresent()){       //检查optional是否包含值,存在位true
						updatedValue = state.get();   //获取optional实例的值
					}
					for(Integer value: values){
						updatedValue = value+updatedValue;
					}
					return Optional.of(updatedValue);  //of方法通过工厂方法创建Optional类。需要注意的是,创建对象时传入的参数不能为null。如果传入参数为null,则抛出NullPointerException 。
				}
			}
		);
		//打印键值对          计算所有批次的单词次数
		wordsCount.print();
		/*
		* Spark Streaming执行引擎也就是Driver开始运行,Driver启动的时候是位于一条新的线程中的,
		* 当然其内部有消息循环体,用于 接受应用程序本身或者Executor中的消息;
		*/
		jsc.start();
		try {
			jsc.awaitTermination();
		} catch (InterruptedException e) {
			e.printStackTrace();
		}
		jsc.close();
    }
}

 

 

 

 

posted @ 2018-01-02 00:00  appointint  阅读(171)  评论(0编辑  收藏  举报