Minimum Adjustment Cost
Given an integer array,
adjust each integers so that the difference of every adjacent integers are not greater than a given number target. If the array before adjustment is A, the array after adjustment is B, you should minimize the sum of |A[i]-B[i]| Notice You can assume each number in the array is a positive integer and not greater than 100. Have you met this question in a real interview? Yes Example Given [1,4,2,3] and target = 1, one of the solutions is [2,3,2,3], the adjustment cost is 2 and it's minimal. Return 2.
这道题要看出是背包问题,不容易,跟FB一面 paint house很像,比那个难一点
定义res[i][j] 表示前 i个number with 最后一个number是j,这样的minimum adjusting cost
public int MinAdjustmentCost(ArrayList<Integer> A, int target) { // write your code here // 前i-1 个数调整后并且第i-1个数调整为j的cost int n = A.size(); int[][] f = new int[n + 1][101]; // initialize for (int i = 0; i <= 100; i++) { f[0][i] = 0; } for (int i = 1; i <= n; i++) { for (int j = 0; j <= 100; j++) { f[i][j] = Integer.MAX_VALUE; } } // //function for (int i = 1; i <= n; i++) { for (int j = 0; j <= 100; j++) { for (int k = 0; k <= 100; k++) { if (Math.abs(j - k) <= target) { f[i][k] = Math.min(f[i][k], f[i - 1][j] + Math.abs(A.get(i - 1) - k)); } } } } int ans = Integer.MAX_VALUE; for (int i = 0; i <= 100; i++) { ans = Math.min(ans, f[n][i]); } return ans; }