Edit Distance
Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2.
(each operation is counted as 1 step.) You have the following 3 operations permitted on a word: a) Insert a character b) Delete a character c) Replace a character
Given word1 ="mart"
and word2 ="karma"
, return3
.
res[i][j]表示Edit Distance between X数组的前i个元素以及Y数组的前j个元素,或者the minimum # of operations to convert X前i个元素 into Y的前j个元素
因为对于Xi 和 Yj,操作无非是 insert, delete, replace三种,所以递归式就是三项:根据上面这个图很清楚:res[i][j] = min{res[i-1][j]+1, res[i][j-1]+1, Xi == Yj ? res[i-1][j-1] : res[i-1][j-1] + 1}
Use f[i][j] to represent the shortest edit distance between word1[0,i) and word2[0, j). Then compare the last character of word1[0,i) and word2[0,j), which are c and d respectively (c == word1[i-1], d == word2[j-1]):
if c == d, then : f[i][j] = f[i-1][j-1]
Otherwise we can use three operations to convert word1 to word2:
(a) if we replaced c with d: f[i][j] = f[i-1][j-1] + 1;
(b) if we added d after c: f[i][j] = f[i][j-1] + 1;
(c) if we deleted c: f[i][j] = f[i-1][j] + 1;
Note that f[i][j] only depends on f[i-1][j-1], f[i-1][j] and f[i][j-1], therefore we can reduce the space to O(n) by using only the (i-1)th array and previous updated element(f[i][j-1]).
public int minDistance(String word1, String word2) { // write your code here // state int m = word1.length(), n = word2.length(); /*if (word1 == null || word2 == null || )*/ int[][] f = new int[m + 1][n + 1]; // initialize f[0][0] = 0; for (int i = 1; i <= m; i++) { f[i][0] = i; } for (int i = 1; i <= n; i++) { f[0][i] = i; } // function for (int i = 1; i <= m; i++) { for (int j = 1; j <= n; j++) { if (word1.charAt(i - 1) == word2.charAt(j - 1)) { f[i][j] = /*f[i - 1][j - 1]*/ Math.min(f[i - 1][j - 1], Math.min(f[i - 1][j] + 1, f[i][j - 1] + 1)); } else { f[i][j] = Math.min(f[i - 1][j - 1] + 1, Math.min(f[i - 1][j] + 1, f[i][j - 1] + 1)); } } } return f[m][n]; }
//Note that f[i][j] only depends on f[i-1][j-1], f[i-1][j] and f[i][j-1], therefore we can reduce the space to O(n) by using only the (i-1)th array and previous updated element(f[i][j-1]).
int minDistance(string word1, string word2) { int l1 = word1.size(); int l2 = word2.size(); int[] f = new int[l2 + 1]; for (int j = 1; j <= l2; ++j) f[j] = j; for (int i = 1; i <= l1; ++i) { int prev = i; for (int j = 1; j <= l2; ++j) { int cur; if (word1[i-1] == word2[j-1]) { cur = f[j-1]; } else { cur = min(min(f[j-1], prev), f[j]) + 1; } f[j-1] = prev; prev = cur; } f[l2] = prev; } return f[l2]; }
写好状态后, 想想与上一个状态怎么用题意联系起来, 上一个状态常常是遍历的上一个状态, 字符串问题常常要考虑上一个字母是否匹配来分情况讨论