Transformers--4-37-中文文档-二十八-

Transformers 4.37 中文文档(二十八)

原文:huggingface.co/docs/transformers

RetriBERT

原文:huggingface.co/docs/transformers/v4.37.2/en/model_doc/retribert

此模型仅处于维护模式,因此我们不会接受任何更改其代码的新 PR。

如果您在运行此模型时遇到任何问题,请重新安装支持此模型的最后一个版本:v4.30.0。您可以通过运行以下命令来执行:pip install -U transformers==4.30.0

概述

RetriBERT 模型是在博文Explain Anything Like I’m Five: A Model for Open Domain Long Form Question Answering中提出的。RetriBERT 是一个小型模型,使用单个或一对 BERT 编码器进行文本的稠密语义索引。

这个模型是由yjernite贡献的。可以在这里找到训练和使用模型的代码。

RetriBertConfig

class transformers.RetriBertConfig

<来源>

( vocab_size = 30522 hidden_size = 768 num_hidden_layers = 8 num_attention_heads = 12 intermediate_size = 3072 hidden_act = 'gelu' hidden_dropout_prob = 0.1 attention_probs_dropout_prob = 0.1 max_position_embeddings = 512 type_vocab_size = 2 initializer_range = 0.02 layer_norm_eps = 1e-12 share_encoders = True projection_dim = 128 pad_token_id = 0 **kwargs )

参数

  • vocab_size (int, 可选, 默认为 30522) — RetriBERT 模型的词汇表大小。定义了在调用 RetriBertModel 时可以表示的不同标记的数量。

  • hidden_size (int, 可选, 默认为 768) — 编码器层和池化器层的维度。

  • num_hidden_layers (int, 可选, 默认为 12) — Transformer 编码器中隐藏层的数量。

  • num_attention_heads (int, 可选, 默认为 12) — Transformer 编码器中每个注意力层的注意力头数。

  • intermediate_size (int, 可选, 默认为 3072) — Transformer 编码器中“中间”(通常称为前馈)层的维度。

  • hidden_act (strfunction, 可选, 默认为"gelu") — 编码器和池化器中的非线性激活函数(函数或字符串)。如果是字符串,支持"gelu""relu""silu""gelu_new"

  • hidden_dropout_prob (float, 可选, 默认为 0.1) — 嵌入层、编码器和池化器中所有全连接层的丢失概率。

  • attention_probs_dropout_prob (float, 可选, 默认为 0.1) — 注意力概率的丢失比率。

  • max_position_embeddings (int, 可选, 默认为 512) — 此模型可能使用的最大序列长度。通常将其设置为较大的值以防万一(例如,512 或 1024 或 2048)。

  • type_vocab_size (int, 可选, 默认为 2) — 传递给 BertModel 的token_type_ids的词汇表大小。

  • initializer_range (float, 可选, 默认为 0.02) — 用于初始化所有权重矩阵的截断正态初始化器的标准差。

  • layer_norm_eps (float, 可选, 默认为 1e-12) — 层归一化层使用的 epsilon。

  • share_encoders (bool, 可选, 默认为True) — 是否使用相同的 Bert 类型编码器来处理查询和文档

  • projection_dim (int, 可选, 默认为 128) — 投影后的查询和文档表示的最终维度。

这是用于存储 RetriBertModel 配置的配置类。根据指定的参数实例化 RetriBertModel 模型,定义模型架构。使用默认值实例化配置将产生类似于 RetriBERT yjernite/retribert-base-uncased架构的配置。

配置对象继承自 PretrainedConfig,可用于控制模型输出。阅读来自 PretrainedConfig 的文档以获取更多信息。

RetriBertTokenizer

class transformers.RetriBertTokenizer

<来源>

( vocab_file do_lower_case = True do_basic_tokenize = True never_split = None unk_token = '[UNK]' sep_token = '[SEP]' pad_token = '[PAD]' cls_token = '[CLS]' mask_token = '[MASK]' tokenize_chinese_chars = True strip_accents = None **kwargs )

参数

  • vocab_file (str) — 包含词汇表的文件。

  • do_lower_case (bool, 可选, 默认为 True) — 在标记化时是否将输入转换为小写。

  • do_basic_tokenize (bool, 可选, 默认为 True) — 在 WordPiece 之前是否进行基本标记化。

  • never_split (Iterable, 可选) — 在标记化期间永远不会拆分的标记集合。仅在do_basic_tokenize=True时才有效。

  • unk_token (str, 可选, 默认为 "[UNK]") — 未知标记。词汇表中不存在的标记无法转换为 ID,而是设置为此标记。

  • sep_token (str, 可选, 默认为 "[SEP]") — 分隔符标记,在从多个序列构建序列时使用,例如用于序列分类的两个序列或用于文本和问题的问题回答。它还用作使用特殊标记构建的序列的最后一个标记。

  • pad_token (str, 可选, 默认为 "[PAD]") — 用于填充的标记,例如在批处理不同长度的序列时。

  • cls_token (str, 可选, 默认为 "[CLS]") — 在进行序列分类(整个序列的分类,而不是每个标记的分类)时使用的分类器标记。构建带有特殊标记的序列时,它是序列的第一个标记。

  • mask_token (str, 可选, 默认为 "[MASK]") — 用于屏蔽值的标记。这是在使用掩码语言建模训练此模型时使用的标记。这是模型将尝试预测的标记。

  • tokenize_chinese_chars (bool, 可选, 默认为 True) — 是否标记化中文字符。这可能应该在日语中停用(参见此问题)。

  • strip_accents (bool, 可选) — 是否去除所有重音符号。如果未指定此选项,则将由lowercase的值确定(与原始 BERT 相同)。

构建一个 RetriBERT 标记器。

RetriBertTokenizer 与 BertTokenizer 相同,并运行端到端的标记化:标点符号拆分和 wordpiece。

此标记器继承自 PreTrainedTokenizer,其中包含大多数主要方法。用户应参考:此超类以获取有关这些方法的更多信息。

build_inputs_with_special_tokens

<来源>

( token_ids_0: List token_ids_1: Optional = None ) → export const metadata = 'undefined';List[int]

参数

  • token_ids_0 (List[int]) — 将添加特殊标记的 ID 列表。

  • token_ids_1 (List[int], 可选) — 序列对的可选第二个 ID 列表。

返回

List[int]

具有适当特殊标记的输入 ID 列表。

通过连接和添加特殊标记从序列或序列对构建用于序列分类任务的模型输入。BERT 序列具有以下格式:

  • 单个序列:[CLS] X [SEP]

  • 一对序列:[CLS] A [SEP] B [SEP]

convert_tokens_to_string

<来源>

( tokens )

将一系列标记(字符串)转换为单个字符串。

create_token_type_ids_from_sequences

<来源>

( token_ids_0: List token_ids_1: Optional = None ) → export const metadata = 'undefined';List[int]

参数

  • token_ids_0 (List[int]) — ID 列表。

  • token_ids_1 (List[int], optional) — 序列对的可选第二个 ID 列表。

返回

List[int]

根据给定序列的标记类型 ID 列表。

从传递的两个序列创建一个用于序列对分类任务的掩码。一个 BERT 序列

对偶掩码的格式如下:

0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
| first sequence    | second sequence |

如果 token_ids_1None,此方法仅返回掩码的第一部分(0s)。

get_special_tokens_mask

<来源>

( token_ids_0: List token_ids_1: Optional = None already_has_special_tokens: bool = False ) → export const metadata = 'undefined';List[int]

参数

  • token_ids_0 (List[int]) — ID 列表。

  • token_ids_1 (List[int], optional) — 序列对的可选第二个 ID 列表。

  • already_has_special_tokens (bool, optional, 默认为 False) — 标记列表是否已经使用特殊标记格式化为模型。

返回

List[int]

一个整数列表,范围为[0, 1]:1 表示特殊标记,0 表示序列标记。

从没有添加特殊标记的标记列表中检索序列 ID。在使用分词器的 prepare_for_model 方法添加特殊标记时调用此方法。

RetriBertTokenizerFast

class transformers.RetriBertTokenizerFast

<来源>

( vocab_file = None tokenizer_file = None do_lower_case = True unk_token = '[UNK]' sep_token = '[SEP]' pad_token = '[PAD]' cls_token = '[CLS]' mask_token = '[MASK]' tokenize_chinese_chars = True strip_accents = None **kwargs )

参数

  • vocab_file (str) — 包含词汇表的文件。

  • do_lower_case (bool, optional, 默认为 True) — 在标记化时是否将输入转换为小写。

  • unk_token (str, optional, 默认为 "[UNK]") — 未知标记。词汇表中不存在的标记无法转换为 ID,而是设置为此标记。

  • sep_token (str, optional, 默认为 "[SEP]") — 分隔符标记,在从多个序列构建序列时使用,例如用于序列分类的两个序列或用于文本和问题的问题回答。它也用作使用特殊标记构建的序列的最后一个标记。

  • pad_token (str, optional, 默认为 "[PAD]") — 用于填充的标记,例如在批处理不同长度的序列时使用。

  • cls_token (str, optional, 默认为 "[CLS]") — 分类器标记,用于进行序列分类(对整个序列进行分类,而不是每个标记的分类)。在构建带有特殊标记的序列时,它是序列的第一个标记。

  • mask_token (str, optional, 默认为 "[MASK]") — 用于屏蔽值的标记。这是在使用掩码语言建模训练此模型时使用的标记。这是模型将尝试预测的标记。

  • clean_text (bool, optional, 默认为 True) — 是否在标记化之前清理文本,通过删除所有控制字符并将所有空格替换为经典空格。

  • tokenize_chinese_chars (bool, optional, 默认为 True) — 是否对中文字符进行标记化。这对于日语可能需要停用(参见此问题)。

  • strip_accents (bool, optional) — 是否去除所有重音符号。如果未指定此选项,则将由 lowercase 的值确定(与原始 BERT 相同)。

  • wordpieces_prefix (str, optional, 默认为 "##") — 子词的前缀。

构建一个“快速”RetriBERT 分词器(由 HuggingFace 的tokenizers库支持)。

RetriBertTokenizerFast 与 BertTokenizerFast 相同,并进行端到端的标记化:标点符号拆分和词片段。

此标记器继承自 PreTrainedTokenizerFast,其中包含大多数主要方法。用户应参考此超类以获取有关这些方法的更多信息。

build_inputs_with_special_tokens

< source >

( token_ids_0 token_ids_1 = None ) → export const metadata = 'undefined';List[int]

参数

  • token_ids_0 (List[int]) — 将添加特殊标记的 ID 列表。

  • token_ids_1 (List[int], 可选) — 序列对的可选第二个 ID 列表。

返回值

List[int]

具有适当特殊标记的 输入 ID 列表。

通过连接和添加特殊标记,为序列分类任务构建模型输入,BERT 序列的格式如下:

  • 单个序列:[CLS] X [SEP]

  • 序列对:[CLS] A [SEP] B [SEP]

create_token_type_ids_from_sequences

< source >

( token_ids_0: List token_ids_1: Optional = None ) → export const metadata = 'undefined';List[int]

参数

  • token_ids_0 (List[int]) — ID 列表。

  • token_ids_1 (List[int], 可选) — 序列对的可选第二个 ID 列表。

返回值

List[int]

根据给定序列的 token type IDs 列表。

从传递的两个序列创建一个用于序列对分类任务的掩码。BERT 序列

pair mask 的格式如下:

0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
| first sequence    | second sequence |

如果 token_ids_1None,则此方法仅返回掩码的第一部分(0)。

RetriBertModel

class transformers.RetriBertModel

< source >

( config: RetriBertConfig )

参数

  • config (RetriBertConfig) — 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只会加载配置。查看 from_pretrained() 方法以加载模型权重。

基于 Bert 的模型,用于嵌入查询或文档以进行文档检索。

此模型继承自 PreTrainedModel。检查超类文档以获取库为所有模型实现的通用方法(例如下载或保存、调整输入嵌入、修剪头等)。

这个模型也是一个 PyTorch torch.nn.Module 的子类。将其用作常规的 PyTorch 模块,并参考 PyTorch 文档以获取有关一般用法和行为的所有相关信息。

forward

< source >

( input_ids_query: LongTensor attention_mask_query: Optional input_ids_doc: LongTensor attention_mask_doc: Optional checkpoint_batch_size: int = -1 ) → export const metadata = 'undefined';`torch.FloatTensor“

参数

  • input_ids_query (torch.LongTensor,形状为 (batch_size, sequence_length)) — 批次中查询的输入序列标记的索引。

    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。

    输入 ID 是什么?

  • attention_mask_query(形状为(batch_size, sequence_length)torch.FloatTensor可选) - 用于避免在填充标记索引上执行注意力。在[0, 1]中选择的掩码值:

    • 对于未被掩码的标记为 1,

    • 对于被掩码的标记为 0。

    注意掩码是什么?

  • input_ids_doc(形状为(batch_size, sequence_length)torch.LongTensor) - 批处理中文档中词汇的输入序列标记的索引。

  • attention_mask_doc(形状为(batch_size, sequence_length)torch.FloatTensor可选) - 用于避免在文档填充标记索引上执行注意力的掩码。

  • checkpoint_batch_sizeint可选,默认为-1) - 如果大于 0,则使用梯度检查点,在 GPU 上一次仅计算checkpoint_batch_size个示例的序列表示。所有查询表示仍然与批处理中的所有文档表示进行比较。

返回

torch.FloatTensor

在尝试将每个查询与其对应的文档以及每个文档与其对应的查询匹配时获得的双向交叉熵损失

RoBERTa

原始文本:huggingface.co/docs/transformers/v4.37.2/en/model_doc/roberta

模型 空间 论文页面

概述

RoBERTa 模型是由 Yinhan Liu、Myle Ott、Naman Goyal、Jingfei Du、Mandar Joshi、Danqi Chen、Omer Levy、Mike Lewis、Luke Zettlemoyer、Veselin Stoyanov 提出的。它基于 2018 年发布的 Google 的 BERT 模型。

它基于 BERT 并修改了关键超参数,删除了下一个句子的预训练目标,并使用更大的迷你批次和学习率进行训练。

论文摘要如下:

语言模型预训练已经带来了显著的性能提升,但是仔细比较不同方法之间的差异是具有挑战性的。训练计算成本高昂,通常在不同大小的私有数据集上进行,正如我们将展示的那样,超参数选择对最终结果有重大影响。我们对 BERT 预训练(Devlin 等人,2019)进行了复制研究,仔细测量了许多关键超参数和训练数据大小的影响。我们发现 BERT 被显著地训练不足,并且可以匹配或超过其后发布的每个模型的性能。我们的最佳模型在 GLUE、RACE 和 SQuAD 上实现了最新的结果。这些结果突显了先前被忽视的设计选择的重要性,并引发了关于最近报道的改进来源的问题。我们发布我们的模型和代码。

这个模型是由julien-c贡献的。原始代码可以在这里找到。

使用提示

  • 这个实现与 BertModel 相同,只是进行了微小的嵌入调整,并为 RoBERTa 预训练模型设置了一个框架。

  • RoBERTa 与 BERT 具有相同的架构,但使用字节级 BPE 作为标记器(与 GPT-2 相同),并使用不同的预训练方案。

  • RoBERTa 没有token_type_ids,您不需要指示哪个标记属于哪个段落。只需使用分隔标记tokenizer.sep_token(或</s>)分隔您的段落。

  • 与 BERT 相同,但使用更好的预训练技巧:

    • 动态掩码:在每个时期,标记的掩码方式都不同,而 BERT 只做一次掩码

    • 一起达到 512 个标记(因此句子的顺序可能跨越几个文档)

    • 使用更大的批次进行训练

    • 使用 BPE 作为子单元,而不是字符(因为 Unicode 字符)

  • CamemBERT 是 RoBERTa 的包装器。请参考此页面获取使用示例。

资源

官方 Hugging Face 和社区(由🌎表示)资源列表,帮助您开始使用 RoBERTa。如果您有兴趣提交资源以包含在此处,请随时发起拉取请求,我们将进行审核!资源应该理想地展示一些新内容,而不是重复现有资源。

文本分类

标记分类

填充-掩码

问答

多项选择

RobertaConfig

class transformers.RobertaConfig

<来源>

( vocab_size = 50265 hidden_size = 768 num_hidden_layers = 12 num_attention_heads = 12 intermediate_size = 3072 hidden_act = 'gelu' hidden_dropout_prob = 0.1 attention_probs_dropout_prob = 0.1 max_position_embeddings = 512 type_vocab_size = 2 initializer_range = 0.02 layer_norm_eps = 1e-12 pad_token_id = 1 bos_token_id = 0 eos_token_id = 2 position_embedding_type = 'absolute' use_cache = True classifier_dropout = None **kwargs )

参数

  • vocab_size (int, optional, defaults to 50265) — RoBERTa 模型的词汇量。定义了在调用 RobertaModel 或 TFRobertaModel 时可以表示的不同标记数量。

  • hidden_size (int, optional, defaults to 768) — 编码器层和池化层的维度。

  • num_hidden_layers (int, optional, defaults to 12) — Transformer 编码器中的隐藏层数量。

  • num_attention_heads (int, optional, defaults to 12) — 每个注意力层中的注意力头数。

  • intermediate_size (int, optional, defaults to 3072) — Transformer 编码器中“中间”(通常称为前馈)层的维度。

  • hidden_act (str or Callable, optional, defaults to "gelu") — 编码器和池化层中的非线性激活函数(函数或字符串)。如果是字符串,支持"gelu", "relu", "silu""gelu_new"

  • hidden_dropout_prob (float, optional, defaults to 0.1) — 嵌入层、编码器和池化器中所有全连接层的 dropout 概率。

  • attention_probs_dropout_prob (float, optional, defaults to 0.1) — 注意力概率的 dropout 比率。

  • max_position_embeddings (int, optional, defaults to 512) — 此模型可能使用的最大序列长度。通常将其设置为较大的值以防万一(例如,512 或 1024 或 2048)。

  • type_vocab_size (int, 可选,默认为 2) — 在调用 RobertaModel 或 TFRobertaModel 时传递的token_type_ids的词汇表大小。

  • initializer_range (float, 可选,默认为 0.02) — 用于初始化所有权重矩阵的截断正态初始化器的标准差。

  • layer_norm_eps (float, 可选,默认为 1e-12) — 层归一化层使用的ε。

  • position_embedding_type (str, 可选,默认为"absolute") — 位置嵌入的类型。选择"absolute""relative_key""relative_key_query"之一。有关位置嵌入的更多信息,请参阅Self-Attention with Relative Position Representations (Shaw et al.)中的"relative_key"。有关"relative_key_query"的更多信息,请参阅Improve Transformer Models with Better Relative Position Embeddings (Huang et al.)中的Method 4

  • is_decoder (bool, 可选,默认为False) — 模型是否用作解码器。如果为False,则模型用作编码器。

  • use_cache (bool, 可选,默认为True) — 模型是否应返回最后的键/值注意力(并非所有模型都使用)。仅在config.is_decoder=True时相关。

  • classifier_dropout (float, 可选) — 分类头的丢失率。

这是用于存储 RobertaModel 或 TFRobertaModel 配置的配置类。它用于根据指定的参数实例化 RoBERTa 模型,定义模型架构。使用默认值实例化配置将产生类似于 RoBERTa roberta-base架构的配置。

配置对象继承自 PretrainedConfig,可用于控制模型输出。阅读 PretrainedConfig 的文档以获取更多信息。

示例:

>>> from transformers import RobertaConfig, RobertaModel

>>> # Initializing a RoBERTa configuration
>>> configuration = RobertaConfig()

>>> # Initializing a model (with random weights) from the configuration
>>> model = RobertaModel(configuration)

>>> # Accessing the model configuration
>>> configuration = model.config

RobertaTokenizer

class transformers.RobertaTokenizer

<来源>

( vocab_file merges_file errors = 'replace' bos_token = '<s>' eos_token = '</s>' sep_token = '</s>' cls_token = '<s>' unk_token = '<unk>' pad_token = '<pad>' mask_token = '<mask>' add_prefix_space = False **kwargs )

参数

  • vocab_file (str) — 词汇表文件的路径。

  • merges_file (str) — 合并文件的路径。

  • errors (str, 可选,默认为"replace") — 解码字节为 UTF-8 时要遵循的范例。有关更多信息,请参阅bytes.decode

  • bos_token (str, 可选,默认为"<s>") — 在预训练期间使用的序列开头标记。可用作序列分类器标记。

    在使用特殊标记构建序列时,这不是用于序列开头的标记。使用的标记是cls_token

  • eos_token (str, 可选,默认为"</s>") — 序列结束标记。

    在使用特殊标记构建序列时,这不是用于序列结尾的标记。使用的标记是sep_token

  • sep_token (str, 可选,默认为"</s>") — 分隔符标记,在从多个序列构建序列时使用,例如用于序列分类的两个序列或用于文本和问题的问题回答。它还用作使用特殊标记构建的序列的最后一个标记。

  • cls_token (str, 可选, 默认为 "<s>") — 在进行序列分类(整个序列而不是每个标记的分类)时使用的分类器标记。构建带有特殊标记的序列时,它是序列的第一个标记。

  • unk_token (str, 可选, 默认为 "<unk>") — 未知标记。词汇表中没有的标记无法转换为 ID,而是设置为此标记。

  • pad_token (str, 可选, 默认为 "<pad>") — 用于填充的标记,例如在批处理不同长度的序列时使用。

  • mask_token (str, 可选, 默认为 "<mask>") — 用于屏蔽值的标记。在使用掩码语言建模训练此模型时使用的标记。这是模型将尝试预测的标记。

  • add_prefix_space (bool, 可选, 默认为 False) — 是否在输入前添加一个初始空格。这允许将前导单词视为任何其他单词。(RoBERTa 分词器通过前面的空格检测单词的开头)。

构建一个 RoBERTa 分词器,从 GPT-2 分词器派生,使用字节级字节对编码。

此分词器已经训练成将空格视为标记的一部分(有点像 sentencepiece),因此一个单词将

无特殊标记的标记列表可能会根据其是否在句子开头(无空格)而进行不同编码:

>>> from transformers import RobertaTokenizer

>>> tokenizer = RobertaTokenizer.from_pretrained("roberta-base")
>>> tokenizer("Hello world")["input_ids"]
[0, 31414, 232, 2]

>>> tokenizer(" Hello world")["input_ids"]
[0, 20920, 232, 2]

您可以通过在实例化此分词器时或在对某些文本调用它时传递 add_prefix_space=True 来避免这种行为,但由于模型不是以这种方式进行预训练的,因此可能会导致性能下降。

当与 is_split_into_words=True 一起使用时,此分词器将在每个单词之前添加一个空格(即使是第一个单词)。

此分词器继承自 PreTrainedTokenizer,其中包含大部分主要方法。用户应参考此超类以获取有关这些方法的更多信息。

build_inputs_with_special_tokens

<来源>

( token_ids_0: List token_ids_1: Optional = None ) → export const metadata = 'undefined';List[int]

参数

  • token_ids_0 (List[int]) — 要添加特殊标记的 ID 列表。

  • token_ids_1 (List[int], 可选) — 第二个序列对的可选 ID 列表。

返回

List[int]

具有适当特殊标记的 input IDs 列表。

通过连接和添加特殊标记从序列或序列对构建用于序列分类任务的模型输入。RoBERTa 序列的格式如下:

  • 单个序列: <s> X </s>

  • 序列对: <s> A </s></s> B </s>

get_special_tokens_mask

<来源>

( token_ids_0: List token_ids_1: Optional = None already_has_special_tokens: bool = False ) → export const metadata = 'undefined';List[int]

参数

  • token_ids_0 (List[int]) — ID 列表。

  • token_ids_1 (List[int], 可选) — 第二个序列对的可选 ID 列表。

  • already_has_special_tokens (bool, 可选, 默认为 False) — 标记列表是否已经格式化为模型的特殊标记。

返回

List[int]

一个整数列表,范围为[0, 1]:1 表示特殊标记,0 表示序列标记。

从没有添加特殊标记的标记列表中检索序列 ID。在使用分词器的 prepare_for_model 方法添加特殊标记时调用此方法。

create_token_type_ids_from_sequences

<来源>

( token_ids_0: List token_ids_1: Optional = None ) → export const metadata = 'undefined';List[int]

参数

  • token_ids_0 (List[int]) — ID 列表。

  • token_ids_1 (List[int], 可选) — 第二个序列对的可选 ID 列表。

返回

List[int]

零列表。

从传递的两个序列创建一个用于序列对分类任务的掩码。RoBERTa 不使用标记类型 ID,因此返回一个零列表。

save_vocabulary

<来源>

( save_directory: str filename_prefix: Optional = None )

RobertaTokenizerFast

class transformers.RobertaTokenizerFast

<来源>

( vocab_file = None merges_file = None tokenizer_file = None errors = 'replace' bos_token = '<s>' eos_token = '</s>' sep_token = '</s>' cls_token = '<s>' unk_token = '<unk>' pad_token = '<pad>' mask_token = '<mask>' add_prefix_space = False trim_offsets = True **kwargs )

参数

  • vocab_filestr)—词汇表文件的路径。

  • merges_filestr)—合并文件的路径。

  • errorsstr可选,默认为"replace")—解码字节为 UTF-8 时要遵循的范例。有关更多信息,请参阅bytes.decode

  • bos_tokenstr可选,默认为"<s>")—在预训练期间使用的序列开始标记。可用作序列分类器标记。

    在构建使用特殊标记的序列时,这不是用于序列开头的标记。使用的标记是cls_token

  • eos_tokenstr可选,默认为"</s>")—序列结束标记。

    在构建使用特殊标记的序列时,这不是用于序列结尾的标记。使用的标记是sep_token

  • sep_tokenstr可选,默认为"</s>")—分隔符标记,用于从多个序列构建序列,例如用于序列分类的两个序列或用于问题回答的文本和问题。它还用作使用特殊标记构建的序列的最后一个标记。

  • cls_tokenstr可选,默认为"<s>")—在进行序列分类(整个序列而不是每个标记的分类)时使用的分类器标记。构建带有特殊标记的序列时,它是序列的第一个标记。

  • unk_tokenstr可选,默认为"<unk>")—未知标记。词汇表中不存在的标记无法转换为 ID,而是设置为此标记。

  • pad_tokenstr可选,默认为"<pad>")—用于填充的标记,例如在批处理不同长度的序列时。

  • mask_tokenstr可选,默认为"<mask>")—用于屏蔽值的标记。这是在使用掩码语言建模训练此模型时使用的标记。这是模型将尝试预测的标记。

  • add_prefix_spacebool可选,默认为False)—是否在输入前添加一个初始空格。这允许将前导单词视为任何其他单词。(RoBERTa 分词器通过前面的空格检测单词的开头)。

  • trim_offsetsbool可选,默认为True)—后处理步骤是否应修剪偏移量以避免包含空格。

构建一个“快速”RoBERTa 分词器(由 HuggingFace 的tokenizers库支持),派生自 GPT-2 分词器,使用字节级字节对编码。

此分词器已经训练成将空格视为标记的一部分(有点像 sentencepiece),因此一个单词将

在句子开头(无空格)或不在句子开头时,将以不同方式编码:

>>> from transformers import RobertaTokenizerFast

>>> tokenizer = RobertaTokenizerFast.from_pretrained("roberta-base")
>>> tokenizer("Hello world")["input_ids"]
[0, 31414, 232, 2]

>>> tokenizer(" Hello world")["input_ids"]
[0, 20920, 232, 2]

您可以通过在实例化此分词器时或在对某些文本调用它时传递add_prefix_space=True来避免该行为,但由于该模型不是以这种方式进行预训练的,因此可能会导致性能下降。

当与is_split_into_words=True一起使用时,此分词器需要以add_prefix_space=True进行实例化。

此分词器继承自 PreTrainedTokenizerFast,其中包含大多数主要方法。用户应参考此超类以获取有关这些方法的更多信息。

build_inputs_with_special_tokens

<来源>

( token_ids_0 token_ids_1 = None )

Pytorch 隐藏了 Pytorch 内容

RobertaModel

class transformers.RobertaModel

<来源>

( config add_pooling_layer = True )

参数

  • config(RobertaConfig)— 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型相关的权重,只加载配置。查看 from_pretrained()方法以加载模型权重。

裸 RoBERTa 模型变压器输出原始隐藏状态,没有特定的头部在顶部。

该模型继承自 PreTrainedModel。查看超类文档以了解库为所有模型实现的通用方法(如下载或保存、调整输入嵌入、修剪头等)。

该模型还是 PyTorch torch.nn.Module子类。将其用作常规 PyTorch 模块,并参考 PyTorch 文档以获取有关一般用法和行为的所有相关信息。

该模型可以作为编码器(仅具有自注意力)或解码器运行,在后一种情况下,在自注意力层之间添加了一层交叉注意力,遵循 Ashish Vaswani、Noam Shazeer、Niki Parmar、Jakob Uszkoreit、Llion Jones、Aidan N. Gomez、Lukasz Kaiser 和 Illia Polosukhin 在Attention is all you need中描述的架构。

要作为解码器运行,模型需要使用配置中的is_decoder参数初始化为True。要在 Seq2Seq 模型中使用,模型需要使用is_decoder参数和add_cross_attention都设置为True进行初始化;然后期望将encoder_hidden_states作为输入传递给前向传递。

.. _Attention is all you need: arxiv.org/abs/1706.03762

forward

<来源>

( input_ids: Optional = None attention_mask: Optional = None token_type_ids: Optional = None position_ids: Optional = None head_mask: Optional = None inputs_embeds: Optional = None encoder_hidden_states: Optional = None encoder_attention_mask: Optional = None past_key_values: Optional = None use_cache: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.modeling_outputs.BaseModelOutputWithPoolingAndCrossAttentions or tuple(torch.FloatTensor)

参数

  • input_ids(形状为(batch_size, sequence_length)torch.LongTensor)— 词汇表中输入序列标记的索引。

    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()。

    什么是输入 ID?

  • attention_mask(形状为(batch_size, sequence_length)torch.FloatTensor可选)— 用于避免在填充标记索引上执行注意力的掩码。选择的掩码值在[0, 1]中:

    • 1 用于未被“掩码”掉的标记,

    • 0 用于被“掩码”掉的标记。

    什么是注意力掩码?

  • token_type_ids(形状为(batch_size, sequence_length)torch.LongTensor可选)— 段标记索引,指示输入的第一部分和第二部分。索引在[0,1]中选择:

    • 0 对应于“句子 A”标记,

    • 1 对应于“句子 B”标记。只有在模型初始化时使用type_vocab_size参数值时才能使用此参数

      = 2. 此张量中的所有值应始终 < type_vocab_size。

    什么是标记类型 ID?

  • position_ids(形状为(batch_size, sequence_length)torch.LongTensor可选)— 每个输入序列标记在位置嵌入中的位置索引。在范围[0, config.max_position_embeddings - 1]中选择。

    什么是位置 ID?

  • head_mask (torch.FloatTensor of shape (num_heads,) or (num_layers, num_heads), optional) — 用于使自注意力模块的选定头部失效的掩码。掩码值选择在[0, 1]中:

    • 1 表示头部未被masked

    • 0 表示头部被masked

  • inputs_embeds (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional) — 可选地,可以直接传递嵌入表示,而不是传递input_ids。如果您想要更多控制权来将input_ids索引转换为相关向量,而不是模型的内部嵌入查找矩阵,则这很有用。

  • output_attentions (bool, optional) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量下的attentions

  • output_hidden_states (bool, optional) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states

  • return_dict (bool, optional) — 是否返回一个 ModelOutput 而不是一个普通的元组。

  • encoder_hidden_states (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional) — 编码器最后一层的隐藏状态序列。如果模型配置为解码器,则在交叉注意力中使用。

  • encoder_attention_mask (torch.FloatTensor of shape (batch_size, sequence_length), optional) — 用于避免在编码器输入的填充标记索引上执行注意力的掩码。如果模型配置为解码器,则在交叉注意力中使用。掩码值选择在[0, 1]中:

    • 对于未被masked的标记为 1。

    • 对于被masked的标记为 0。

  • past_key_values (tuple(tuple(torch.FloatTensor)) of length config.n_layers,每个元组包含形状为(batch_size, num_heads, sequence_length - 1, embed_size_per_head)的 4 个张量) — 包含注意力块的预计算键和值隐藏状态。可用于加速解码。

    如果使用了past_key_values,用户可以选择只输入形状为(batch_size, 1)的最后一个decoder_input_ids(那些没有将它们的过去键值状态提供给此模型的)而不是形状为(batch_size, sequence_length)的所有decoder_input_ids

  • use_cache (bool, optional) — 如果设置为True,将返回past_key_values键值状态,并可用于加速解码(参见past_key_values)。

返回

transformers.modeling_outputs.BaseModelOutputWithPoolingAndCrossAttentions 或 tuple(torch.FloatTensor)

一个 transformers.modeling_outputs.BaseModelOutputWithPoolingAndCrossAttentions 或一个torch.FloatTensor元组(如果传递了return_dict=False或当config.return_dict=False时)包含根据配置(RobertaConfig)和输入而异的各种元素。

  • last_hidden_state (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size)) — 模型最后一层的隐藏状态序列的输出。

  • pooler_output (torch.FloatTensor of shape (batch_size, hidden_size)) — 经过辅助预训练任务中用于处理的层进一步处理后,序列第一个标记(分类标记)的最后一层隐藏状态。例如,对于 BERT 系列模型,这将返回经过线性层和 tanh 激活函数处理后的分类标记。线性层的权重是在预训练期间从下一个句子预测(分类)目标中训练的。

  • hidden_states (tuple(torch.FloatTensor)可选,当传递output_hidden_states=True或者config.output_hidden_states=True时返回) — 形状为(batch_size, sequence_length, hidden_size)torch.FloatTensor元组(一个用于嵌入层的输出,如果模型有嵌入层,+ 一个用于每一层的输出)。

    模型在每一层输出的隐藏状态以及可选的初始嵌入输出。

  • attentions (tuple(torch.FloatTensor)可选,当传递output_attentions=True或者config.output_attentions=True时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)torch.FloatTensor元组(每层一个)。

    注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。

  • cross_attentions (tuple(torch.FloatTensor)可选,当传递output_attentions=Trueconfig.add_cross_attention=True或者config.output_attentions=True时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)torch.FloatTensor元组(每层一个)。

    解码器的交叉注意力层的注意力权重 softmax 后的注意力权重,用于计算交叉注意力头中的加权平均值。

  • past_key_values (tuple(tuple(torch.FloatTensor))可选,当传递use_cache=True或者config.use_cache=True时返回) — 长度为config.n_layerstuple(torch.FloatTensor)元组,每个元组有 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)的张量,如果config.is_encoder_decoder=True还有 2 个额外的形状为(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)的张量。

    包含预先计算的隐藏状态(自注意力块中的键和值,以及如果config.is_encoder_decoder=True在交叉注意力块中的情况下)可用于加速顺序解码(查看past_key_values输入)。

RobertaModel 的前向方法,覆盖了__call__特殊方法。

虽然前向传递的步骤需要在此函数内定义,但应该在此之后调用Module实例,而不是在此处调用,因为前者会处理运行前后处理步骤,而后者会默默地忽略它们。

示例:

>>> from transformers import AutoTokenizer, RobertaModel
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("roberta-base")
>>> model = RobertaModel.from_pretrained("roberta-base")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)

>>> last_hidden_states = outputs.last_hidden_state

RobertaForCausalLM

transformers.RobertaForCausalLM

<来源>

( config )

参数

  • config(RobertaConfig) — 包含模型所有参数的模型配置类。使用配置文件初始化不会加载与模型相关的权重,只加载配置。查看 from_pretrained()方法以加载模型权重。

RoBERTa 模型在顶部带有语言建模头部,用于 CLM 微调。

此模型继承自 PreTrainedModel。检查超类文档以获取库为所有模型实现的通用方法(例如下载或保存、调整输入嵌入、修剪头等)。

此模型也是 PyTorch torch.nn.Module子类。将其用作常规 PyTorch 模块,并参考 PyTorch 文档以获取有关一般用法和行为的所有相关信息。

forward

<来源>

( input_ids: Optional = None attention_mask: Optional = None token_type_ids: Optional = None position_ids: Optional = None head_mask: Optional = None inputs_embeds: Optional = None encoder_hidden_states: Optional = None encoder_attention_mask: Optional = None labels: Optional = None past_key_values: Tuple = None use_cache: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.modeling_outputs.CausalLMOutputWithCrossAttentions or tuple(torch.FloatTensor)

参数

  • input_ids(形状为(batch_size, sequence_length)torch.LongTensor) — 词汇表中输入序列标记的索引。

    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。

    什么是输入 ID?

  • attention_mask (torch.FloatTensor of shape (batch_size, sequence_length), optional) — 用于避免在填充标记索引上执行注意力的掩码。掩码值在 [0, 1] 中选择:

    • 1 对于未被masked的标记,

    • 0 用于被masked的标记。

    什么是注意力掩码?

  • token_type_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) — 段标记索引,指示输入的第一部分和第二部分。索引在 [0,1] 中选择:

    • 0 对应于 句子 A 标记,

    • 1 对应于 句子 B 标记。仅当模型使用值初始化为 type_vocab_size 参数时才能使用此参数

      = 2. 此张量中的所有值始终应 < type_vocab_size。

    什么是标记类型 ID?

  • position_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) — 每个输入序列标记在位置嵌入中的位置索引。在范围 [0, config.max_position_embeddings - 1] 中选择。

    什么是位置 ID?

  • head_mask (torch.FloatTensor of shape (num_heads,) or (num_layers, num_heads), optional) — 用于使自注意力模块中选择的头部失效的掩码。掩码值在 [0, 1] 中选择:

    • 1 表示头部未被masked

    • 0 表示头部被masked

  • inputs_embeds (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional) — 可选地,可以直接传递嵌入表示,而不是传递 input_ids。如果您希望更好地控制如何将 input_ids 索引转换为相关向量,这将非常有用,而不是使用模型的内部嵌入查找矩阵。

  • output_attentions (bool, optional) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回的张量下的 attentions

  • output_hidden_states (bool, optional) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回的张量下的 hidden_states

  • return_dict (bool, optional) — 是否返回 ModelOutput 而不是普通元组。

  • encoder_hidden_states (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional) — 编码器最后一层的隐藏状态序列。如果模型配置为解码器,则在交叉注意力中使用。

  • encoder_attention_mask (torch.FloatTensor of shape (batch_size, sequence_length), optional) — 用于避免在编码器输入的填充标记索引上执行注意力的掩码。如果模型配置为解码器,则在交叉注意力中使用此掩码。掩码值在 [0, 1] 中选择:

    • 1 对于未被masked的标记,

    • 0 对于被masked的标记。

  • labels (torch.LongTensor of shape (batch_size, sequence_length), optional) — 用于计算从左到右的语言建模损失(下一个单词预测)的标签。索引应在 [-100, 0, ..., config.vocab_size] 中(参见 input_ids 文档字符串)。将索引设置为 -100 的标记将被忽略(masked),损失仅计算具有标签在 [0, ..., config.vocab_size] 中的标记。

  • past_key_values (tuple(tuple(torch.FloatTensor)),长度为config.n_layers,每个元组包含形状为(batch_size, num_heads, sequence_length - 1, embed_size_per_head)的缓存的自注意力和交叉注意力层的键和值状态。可用于加速解码。

    如果使用past_key_values,用户可以选择只输入最后一个形状为(batch_size, 1)decoder_input_ids(那些没有将它们的过去键值状态提供给此模型的)而不是所有形状为(batch_size, sequence_length)decoder_input_ids

  • use_cache (bool, optional) — 如果设置为True,则返回past_key_values键值状态,可用于加速解码(参见past_key_values)。

返回

transformers.modeling_outputs.CausalLMOutputWithCrossAttentions 或torch.FloatTensor元组。

一个 transformers.modeling_outputs.CausalLMOutputWithCrossAttentions 或一个torch.FloatTensor元组(如果传递了return_dict=False或当config.return_dict=False时),包括根据配置(RobertaConfig)和输入的不同元素。

  • loss (torch.FloatTensor of shape (1,), optional, returned when labels is provided) — 语言建模损失(用于下一个标记预测)。

  • logits (torch.FloatTensor of shape (batch_size, sequence_length, config.vocab_size)) — 语言建模头的预测分数(SoftMax 之前每个词汇标记的分数)。

  • hidden_states (tuple(torch.FloatTensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) — Tuple of torch.FloatTensor (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size)

    模型在每一层输出的隐藏状态以及可选的初始嵌入输出。

  • attentions (tuple(torch.FloatTensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) — Tuple of torch.FloatTensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。

  • cross_attentions (tuple(torch.FloatTensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) — Tuple of torch.FloatTensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)

    在注意力 softmax 之后的交叉注意力权重,用于计算交叉注意力头中的加权平均值。

  • past_key_values (tuple(tuple(torch.FloatTensor)), optional, returned when use_cache=True is passed or when config.use_cache=True) — Tuple of torch.FloatTensor tuples of length config.n_layers, with each tuple containing the cached key, value states of the self-attention and the cross-attention layers if model is used in encoder-decoder setting. Only relevant if config.is_decoder = True

    包含预先计算的隐藏状态(注意力块中的键和值),可用于加速顺序解码。

RobertaForCausalLM 前向方法,覆盖了__call__特殊方法。

虽然前向传递的步骤需要在这个函数中定义,但应该在此之后调用Module实例,而不是这个函数,因为前者会处理运行前后的处理步骤,而后者会默默地忽略它们。

示例:

>>> from transformers import AutoTokenizer, RobertaForCausalLM, AutoConfig
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("roberta-base")
>>> config = AutoConfig.from_pretrained("roberta-base")
>>> config.is_decoder = True
>>> model = RobertaForCausalLM.from_pretrained("roberta-base", config=config)

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)

>>> prediction_logits = outputs.logits

RobertaForMaskedLM

class transformers.RobertaForMaskedLM

<来源>

( config )

参数

  • config(RobertaConfig)— 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型相关的权重,只加载配置。查看 from_pretrained()方法以加载模型权重。

RoBERTa 模型在顶部有一个语言建模头。

这个模型继承自 PreTrainedModel。查看超类文档以获取库实现的所有模型的通用方法(例如下载或保存、调整输入嵌入、修剪头等)。

这个模型也是一个 PyTorch torch.nn.Module子类。将其用作常规的 PyTorch 模块,并参考 PyTorch 文档以获取有关一般用法和行为的所有相关信息。

forward

<来源>

( input_ids: Optional = None attention_mask: Optional = None token_type_ids: Optional = None position_ids: Optional = None head_mask: Optional = None inputs_embeds: Optional = None encoder_hidden_states: Optional = None encoder_attention_mask: Optional = None labels: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.modeling_outputs.MaskedLMOutput or tuple(torch.FloatTensor)

参数

  • input_idstorch.LongTensor,形状为(batch_size, sequence_length))— 词汇表中输入序列标记的索引。

    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()。

    什么是输入 ID?

  • attention_masktorch.FloatTensor,形状为(batch_size, sequence_length)可选)— 避免在填充标记索引上执行注意力的掩码。选择的掩码值在[0,1]中:

    • 对于未被masked的标记,值为 1,

    • 对于被masked的标记,值为 0。

    什么是注意力掩码?

  • token_type_idstorch.LongTensor,形状为(batch_size, sequence_length)可选)— 段标记索引,用于指示输入的第一部分和第二部分。索引在[0,1]中选择:

    • 值为 0 对应于句子 A标记,

    • 值为 1 对应于句子 B标记。只有在使用值初始化模型时,才能使用此参数type_vocab_size参数

      = 2. 此张量中的所有值应始终 < type_vocab_size。

    什么是标记类型 ID?

  • position_idstorch.LongTensor,形状为(batch_size, sequence_length)可选)— 每个输入序列标记在位置嵌入中的位置索引。在范围[0, config.max_position_embeddings - 1]中选择。

    什么是位置 ID?

  • head_masktorch.FloatTensor,形状为(num_heads,)(num_layers, num_heads)可选)— 用于使自注意力模块的选定头部无效的掩码。选择的掩码值在[0,1]中:

    • 1 表示头部未被masked

    • 0 表示头部被masked

  • inputs_embedstorch.FloatTensor,形状为(batch_size, sequence_length, hidden_size)可选)— 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids。如果您想要更多控制权来将input_ids索引转换为相关向量,这将非常有用,而不是使用模型的内部嵌入查找矩阵。

  • output_attentionsbool可选)— 是否返回所有注意力层的注意力张量。有关更多详细信息,请查看返回的张量下的attentions

  • output_hidden_states (booloptional) — 是否返回所有层的隐藏状态。有关更多细节,请参阅返回张量下的hidden_states

  • return_dict (booloptional) — 是否返回 ModelOutput 而不是普通元组。

  • labels (torch.LongTensor,形状为(batch_size, sequence_length)optional) — 用于计算掩码语言建模损失的标签。索引应在[-100, 0, ..., config.vocab_size]内(参见input_ids文档字符串)。索引设置为-100的标记将被忽略(掩码),损失仅计算具有标签在[0, ..., config.vocab_size]内的标记。

  • kwargs (Dict[str, any],可选,默认为{}) — 用于隐藏已弃用的旧参数。

返回

transformers.modeling_outputs.MaskedLMOutput 或tuple(torch.FloatTensor)

一个 transformers.modeling_outputs.MaskedLMOutput 或一个torch.FloatTensor元组(如果传递return_dict=Falseconfig.return_dict=False)包含各种元素,具体取决于配置(RobertaConfig)和输入。

  • loss (torch.FloatTensor,形状为(1,)optional,当提供labels时返回) — 掩码语言建模(MLM)损失。

  • logits (torch.FloatTensor,形状为(batch_size, sequence_length, config.vocab_size)) — 语言建模头的预测分数(SoftMax 之前每个词汇标记的分数)。

  • hidden_states (tuple(torch.FloatTensor)optional,当传递output_hidden_states=Trueconfig.output_hidden_states=True时返回) — 形状为(batch_size, sequence_length, hidden_size)torch.FloatTensor元组(如果模型具有嵌入层,则为嵌入输出的输出+每层的输出)。

    模型在每一层输出处的隐藏状态以及可选的初始嵌入输出。

  • attentions (tuple(torch.FloatTensor), optional, 当传递output_attentions=Trueconfig.output_attentions=True时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)torch.FloatTensor元组(每层一个)。

    注意力权重在注意力 softmax 之后,用于计算自注意力头中的加权平均值。

RobertaForMaskedLM 的前向方法,覆盖了__call__特殊方法。

尽管前向传递的步骤需要在此函数内定义,但应该在此之后调用Module实例,而不是在此处调用,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例:

>>> from transformers import AutoTokenizer, RobertaForMaskedLM
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("roberta-base")
>>> model = RobertaForMaskedLM.from_pretrained("roberta-base")

>>> inputs = tokenizer("The capital of France is <mask>.", return_tensors="pt")

>>> with torch.no_grad():
...     logits = model(**inputs).logits

>>> # retrieve index of <mask>
>>> mask_token_index = (inputs.input_ids == tokenizer.mask_token_id)[0].nonzero(as_tuple=True)[0]

>>> predicted_token_id = logits[0, mask_token_index].argmax(axis=-1)
>>> tokenizer.decode(predicted_token_id)
' Paris'

>>> labels = tokenizer("The capital of France is Paris.", return_tensors="pt")["input_ids"]
>>> # mask labels of non-<mask> tokens
>>> labels = torch.where(inputs.input_ids == tokenizer.mask_token_id, labels, -100)

>>> outputs = model(**inputs, labels=labels)
>>> round(outputs.loss.item(), 2)
0.1

RobertaForSequenceClassification

class transformers.RobertaForSequenceClassification

< source >

( config )

参数

  • config(RobertaConfig) — 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只加载配置。查看 from_pretrained()方法以加载模型权重。

RoBERTa 模型变压器,顶部带有序列分类/回归头(在池化输出之上的线性层),例如 GLUE 任务。

此模型继承自 PreTrainedModel。检查超类文档,了解库为其所有模型实现的通用方法(例如下载或保存、调整输入嵌入、修剪头等)。

此模型还是一个 PyTorch torch.nn.Module子类。将其用作常规的 PyTorch 模块,并参考 PyTorch 文档以获取有关一般用法和行为的所有相关信息。

forward

<来源>

( input_ids: Optional = None attention_mask: Optional = None token_type_ids: Optional = None position_ids: Optional = None head_mask: Optional = None inputs_embeds: Optional = None labels: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.modeling_outputs.SequenceClassifierOutput or tuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor of shape (batch_size, sequence_length)) — 词汇表中输入序列标记的索引。

    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()。

    什么是输入 ID?

  • attention_mask (torch.FloatTensor of shape (batch_size, sequence_length), optional) — 用于避免在填充标记索引上执行注意力的掩码。掩码值在[0, 1]中选择:

    • 1 表示未被masked的标记,

    • 对于被masked的标记为 0。

    什么是注意力掩码?

  • token_type_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) — 段标记索引,指示输入的第一部分和第二部分。索引在[0,1]中选择:

    • 0 对应于句子 A标记,

    • 1 对应于句子 B标记。只有在使用值为type_vocab_size的参数初始化模型时才能使用此参数

      = 2. 此张量中的所有值应始终 < type_vocab_size。

    什么是标记类型 ID?

  • position_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) — 每个输入序列标记在位置嵌入中的位置索引。在范围[0, config.max_position_embeddings - 1]中选择。

    什么是位置 ID?

  • head_mask (torch.FloatTensor of shape (num_heads,) or (num_layers, num_heads), optional) — 用于使自注意力模块中选择的头部失效的掩码。掩码值在[0, 1]中选择:

    • 1 表示头部未被masked

    • 0 表示头部被masked

  • inputs_embeds (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids。如果您想要更多控制权,以便将input_ids索引转换为相关向量,而不是模型的内部嵌入查找矩阵,则这很有用。

  • output_attentions (bool, optional) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的attentions

  • output_hidden_states (bool, optional) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的hidden_states

  • return_dict (bool, optional) — 是否返回一个 ModelOutput 而不是一个普通的元组。

  • labels (torch.LongTensor of shape (batch_size,), optional) — 用于计算序列分类/回归损失的标签。索引应在[0, ..., config.num_labels - 1]中。如果config.num_labels == 1,则计算回归损失(均方损失),如果config.num_labels > 1,则计算分类损失(交叉熵)。

返回

transformers.modeling_outputs.SequenceClassifierOutput 或tuple(torch.FloatTensor)

一个 transformers.modeling_outputs.SequenceClassifierOutput 或一个torch.FloatTensor元组(如果传递return_dict=False或当config.return_dict=False时)包含各种元素,具体取决于配置(RobertaConfig)和输入。

  • loss (torch.FloatTensor,形状为(1,)可选,当提供labels时返回) — 分类(如果 config.num_labels==1 则为回归)损失。

  • logits (torch.FloatTensor,形状为(batch_size, config.num_labels)) — SoftMax 之前的分类(如果 config.num_labels==1 则为回归)分数。

  • hidden_states (tuple(torch.FloatTensor)可选,当传递output_hidden_states=True或当config.output_hidden_states=True时返回) — 形状为(batch_size, sequence_length, hidden_size)torch.FloatTensor元组(如果模型有嵌入层,则为嵌入的输出+每层的输出)。

    模型在每一层输出的隐藏状态以及可选的初始嵌入输出。

  • attentions (tuple(torch.FloatTensor)可选,当传递output_attentions=True或当config.output_attentions=True时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)torch.FloatTensor元组(每层一个)。

    注意力权重在注意力 softmax 之后,用于计算自注意力头中的加权平均值。

RobertaForSequenceClassification 的前向方法,覆盖了__call__特殊方法。

虽然前向传递的步骤需要在这个函数内定义,但应该在此之后调用Module实例,而不是在此之后调用,因为前者会负责运行预处理和后处理步骤,而后者会默默地忽略它们。

单标签分类的示例:

>>> import torch
>>> from transformers import AutoTokenizer, RobertaForSequenceClassification

>>> tokenizer = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-emotion")
>>> model = RobertaForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-emotion")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")

>>> with torch.no_grad():
...     logits = model(**inputs).logits

>>> predicted_class_id = logits.argmax().item()
>>> model.config.id2label[predicted_class_id]
'optimism'

>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = RobertaForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-emotion", num_labels=num_labels)

>>> labels = torch.tensor([1])
>>> loss = model(**inputs, labels=labels).loss
>>> round(loss.item(), 2)
0.08

多标签分类的示例:

>>> import torch
>>> from transformers import AutoTokenizer, RobertaForSequenceClassification

>>> tokenizer = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-emotion")
>>> model = RobertaForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-emotion", problem_type="multi_label_classification")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")

>>> with torch.no_grad():
...     logits = model(**inputs).logits

>>> predicted_class_ids = torch.arange(0, logits.shape[-1])[torch.sigmoid(logits).squeeze(dim=0) > 0.5]

>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = RobertaForSequenceClassification.from_pretrained(
...     "cardiffnlp/twitter-roberta-base-emotion", num_labels=num_labels, problem_type="multi_label_classification"
... )

>>> labels = torch.sum(
...     torch.nn.functional.one_hot(predicted_class_ids[None, :].clone(), num_classes=num_labels), dim=1
... ).to(torch.float)
>>> loss = model(**inputs, labels=labels).loss

RobertaForMultipleChoice

class transformers.RobertaForMultipleChoice

<来源>

( config )

参数

  • config (RobertaConfig) — 模型的所有参数的模型配置类。使用配置文件初始化不会加载与模型相关的权重,只会加载配置。查看 from_pretrained()方法以加载模型权重。

在顶部具有多项选择分类头的 Roberta 模型(在池化输出的顶部有一个线性层和一个 softmax),例如用于 RocStories/SWAG 任务。

这个模型继承自 PreTrainedModel。检查超类文档以获取库为所有模型实现的通用方法(如下载或保存、调整输入嵌入、修剪头等)。

这个模型也是一个 PyTorch torch.nn.Module子类。将其用作常规的 PyTorch 模块,并参考 PyTorch 文档以获取与一般用法和行为相关的所有内容。

forward

<来源>

( input_ids: Optional = None token_type_ids: Optional = None attention_mask: Optional = None labels: Optional = None position_ids: Optional = None head_mask: Optional = None inputs_embeds: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.modeling_outputs.MultipleChoiceModelOutput or tuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor,形状为(batch_size, num_choices, sequence_length)) — 词汇表中输入序列标记的索引。

    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。

    什么是输入 ID?

  • attention_mask (torch.FloatTensor,形状为(batch_size, num_choices, sequence_length)可选) — 用于避免在填充标记索引上执行注意力的掩码。掩码值选在 [0, 1]

    • 1 用于未被掩码的标记,

    • 0 用于被掩码的标记。

    什么是注意力掩码?

  • token_type_ids (torch.LongTensor,形状为(batch_size, num_choices, sequence_length)可选) — 指示输入的第一部分和第二部分的段标记索引。索引选在 [0,1]

    • 0 对应于 句子 A 标记,

    • 1 对应于 句子 B 标记。此参数仅在模型使用 type_vocab_size 参数初始化时才能使用

      = 2. 此张量中的所有值应始终 < type_vocab_size。

    什么是标记类型 ID?

  • position_ids (torch.LongTensor,形状为(batch_size, num_choices, sequence_length)可选) — 每个输入序列标记在位置嵌入中的位置索引。选在范围 [0, config.max_position_embeddings - 1]

    什么是位置 ID?

  • head_mask (torch.FloatTensor,形状为(num_heads,)(num_layers, num_heads)可选) — 用于使自注意力模块的选定头部失效的掩码。掩码值选在 [0, 1]

    • 1 表示头部未被掩码,

    • 0 表示头部被掩码。

  • inputs_embeds (torch.FloatTensor,形状为(batch_size, num_choices, sequence_length, hidden_size)可选) — 可选地,您可以选择直接传递嵌入表示而不是传递 input_ids。如果您想要更多控制如何将 input_ids 索引转换为相关向量,而不是使用模型的内部嵌入查找矩阵,则这很有用。

  • output_attentions (bool可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量中的 attentions

  • output_hidden_states (bool可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量中的 hidden_states

  • return_dict (bool可选) — 是否返回 ModelOutput 而不是普通元组。

  • labels (torch.LongTensor,形状为(batch_size,)可选) — 用于计算多项选择分类损失的标签。索引应在 [0, ..., num_choices-1],其中 num_choices 是输入张量第二维的大小。 (参见上面的 input_ids)

返回

transformers.modeling_outputs.MultipleChoiceModelOutput 或 tuple(torch.FloatTensor)

一个 transformers.modeling_outputs.MultipleChoiceModelOutput 或一个 torch.FloatTensor 元组(如果传递了 return_dict=False 或当 config.return_dict=False 时)包含根据配置(RobertaConfig)和输入的不同元素。

  • loss (torch.FloatTensor,形状为(1,)可选,当提供labels时返回) — 分类损失。

  • logits (torch.FloatTensor,形状为(batch_size, num_choices)) — num_choices 是输入张量的第二维。 (参见 input_ids 上面的说明)。

    分类得分(SoftMax 之前)。

  • hidden_statestuple(torch.FloatTensor)可选,当传递output_hidden_states=True或当config.output_hidden_states=True时返回)- 形状为(batch_size, sequence_length, hidden_size)torch.FloatTensor元组。

    模型在每一层输出的隐藏状态加上可选的初始嵌入输出。

  • attentionstuple(torch.FloatTensor)可选,当传递output_attentions=True或当config.output_attentions=True时返回)- 形状为(batch_size, num_heads, sequence_length, sequence_length)torch.FloatTensor元组。

    在注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。

RobertaForMultipleChoice 的前向方法,覆盖__call__特殊方法。

虽然前向传递的步骤需要在此函数内定义,但应该在此之后调用Module实例,而不是在此处调用,因为前者会处理运行前后处理步骤,而后者会默默忽略它们。

示例:

>>> from transformers import AutoTokenizer, RobertaForMultipleChoice
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("roberta-base")
>>> model = RobertaForMultipleChoice.from_pretrained("roberta-base")

>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
>>> choice0 = "It is eaten with a fork and a knife."
>>> choice1 = "It is eaten while held in the hand."
>>> labels = torch.tensor(0).unsqueeze(0)  # choice0 is correct (according to Wikipedia ;)), batch size 1

>>> encoding = tokenizer([prompt, prompt], [choice0, choice1], return_tensors="pt", padding=True)
>>> outputs = model(**{k: v.unsqueeze(0) for k, v in encoding.items()}, labels=labels)  # batch size is 1

>>> # the linear classifier still needs to be trained
>>> loss = outputs.loss
>>> logits = outputs.logits

RobertaForTokenClassification

class transformers.RobertaForTokenClassification

<来源>

( config )

参数

  • config(RobertaConfig)- 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只加载配置。查看 from_pretrained()方法以加载模型权重。

在顶部带有标记分类头的 Roberta 模型(隐藏状态输出的线性层),例如用于命名实体识别(NER)任务。

此模型继承自 PreTrainedModel。查看超类文档以获取库为所有模型实现的通用方法(例如下载或保存、调整输入嵌入、修剪头等)。

此模型还是一个 PyTorch torch.nn.Module子类。将其用作常规 PyTorch 模块,并参考 PyTorch 文档以获取有关一般用法和行为的所有相关信息。

forward

<来源>

( input_ids: Optional = None attention_mask: Optional = None token_type_ids: Optional = None position_ids: Optional = None head_mask: Optional = None inputs_embeds: Optional = None labels: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.modeling_outputs.TokenClassifierOutput or tuple(torch.FloatTensor)

参数

  • input_ids(形状为(batch_size, sequence_length)torch.LongTensor)- 词汇表中输入序列标记的索引。

    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()。

    什么是输入 ID?

  • attention_mask(形状为(batch_size, sequence_length)torch.FloatTensor可选)- 避免在填充标记索引上执行注意力的掩码。选择的掩码值在[0, 1]中:

    • 1 对于未被“masked”掉的标记,

    • 对于被masked掉的标记。

    什么是注意力掩码?

  • token_type_ids(形状为(batch_size, sequence_length)torch.LongTensor可选)- 指示输入的第一部分和第二部分的段标记索引。索引在[0,1]中选择:

    • 0 对应于一个句子 A标记,

    • 1 对应于一个句子 B标记。此参数仅在模型使用值为type_vocab_sizetype_vocab_size参数初始化时才能使用。

      = 2. 这个张量中的所有值应始终 < type_vocab_size。

    什么是标记类型 ID?

  • position_ids (torch.LongTensor,形状为(batch_size, sequence_length)可选) — 每个输入序列标记在位置嵌入中的位置索引。选定范围为[0, config.max_position_embeddings - 1]

    什么是位置 ID?

  • head_mask (torch.FloatTensor,形状为(num_heads,)(num_layers, num_heads)可选) — 用于使自注意力模块的选定头部失效的掩码。掩码值选定在[0, 1]范围内:

    • 1 表示头部未被masked

    • 0 表示头部被masked

  • inputs_embeds (torch.FloatTensor,形状为(batch_size, sequence_length, hidden_size)可选) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids。如果您想要更多控制如何将input_ids索引转换为相关向量,而不是使用模型的内部嵌入查找矩阵,这将非常有用。

  • output_attentions (bool可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量中的attentions

  • output_hidden_states (bool, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量中的hidden_states

  • return_dict (bool可选) — 是否返回 ModelOutput 而不是普通元组。

  • labels (torch.LongTensor,形状为(batch_size, sequence_length)可选) — 用于计算标记分类损失的标签。索引应在[0, ..., config.num_labels - 1]范围内。

返回

transformers.modeling_outputs.TokenClassifierOutput 或tuple(torch.FloatTensor)

一个 transformers.modeling_outputs.TokenClassifierOutput 或一个torch.FloatTensor元组(如果传递了return_dict=Falseconfig.return_dict=False时)包含各种元素,具体取决于配置(RobertaConfig)和输入。

  • loss (torch.FloatTensor,形状为(1,)可选,当提供labels时返回) — 分类损失。

  • logits (torch.FloatTensor,形状为(batch_size, sequence_length, config.num_labels)) — 分类分数(SoftMax 之前)。

  • hidden_states (tuple(torch.FloatTensor)可选,当传递output_hidden_states=Trueconfig.output_hidden_states=True时返回) — 形状为(batch_size, sequence_length, hidden_size)torch.FloatTensor元组(如果模型具有嵌入层,则为嵌入的输出一个 + 每个层的输出一个)。

    模型在每个层的输出处的隐藏状态加上可选的初始嵌入输出。

  • attentions (tuple(torch.FloatTensor)可选,当传递output_attentions=Trueconfig.output_attentions=True时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)torch.FloatTensor元组(每个层一个)。

    在自注意力头中用于计算加权平均值的注意力 softmax 之后的注意力权重。

RobertaForTokenClassification 的前向方法,覆盖__call__特殊方法。

虽然前向传递的配方需要在此函数内定义,但应该在此之后调用Module实例,而不是在此处调用,因为前者负责运行前处理和后处理步骤,而后者会默默地忽略它们。

示例:

>>> from transformers import AutoTokenizer, RobertaForTokenClassification
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("Jean-Baptiste/roberta-large-ner-english")
>>> model = RobertaForTokenClassification.from_pretrained("Jean-Baptiste/roberta-large-ner-english")

>>> inputs = tokenizer(
...     "HuggingFace is a company based in Paris and New York", add_special_tokens=False, return_tensors="pt"
... )

>>> with torch.no_grad():
...     logits = model(**inputs).logits

>>> predicted_token_class_ids = logits.argmax(-1)

>>> # Note that tokens are classified rather then input words which means that
>>> # there might be more predicted token classes than words.
>>> # Multiple token classes might account for the same word
>>> predicted_tokens_classes = [model.config.id2label[t.item()] for t in predicted_token_class_ids[0]]
>>> predicted_tokens_classes
['O', 'ORG', 'ORG', 'O', 'O', 'O', 'O', 'O', 'LOC', 'O', 'LOC', 'LOC']

>>> labels = predicted_token_class_ids
>>> loss = model(**inputs, labels=labels).loss
>>> round(loss.item(), 2)
0.01

RobertaForQuestionAnswering

class transformers.RobertaForQuestionAnswering

<来源>

( config )

参数

  • config(RobertaConfig)-模型配置类,包含模型的所有参数。使用配置文件初始化不会加载与模型相关的权重,只加载配置。查看 from_pretrained()方法以加载模型权重。

具有用于提取式问答任务的跨度分类头部的 Roberta 模型,例如 SQuAD(在隐藏状态输出的顶部进行线性层计算跨度起始对数跨度结束对数)。

此模型继承自 PreTrainedModel。查看超类文档以了解库为所有模型实现的通用方法(例如下载或保存、调整输入嵌入、修剪头等)。

此模型还是 PyTorch torch.nn.Module子类。将其用作常规 PyTorch 模块,并参考 PyTorch 文档以获取有关一般用法和行为的所有相关信息。

forward

<来源>

( input_ids: Optional = None attention_mask: Optional = None token_type_ids: Optional = None position_ids: Optional = None head_mask: Optional = None inputs_embeds: Optional = None start_positions: Optional = None end_positions: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.modeling_outputs.QuestionAnsweringModelOutput or tuple(torch.FloatTensor)

参数

  • input_ids(形状为(batch_size, sequence_length)torch.LongTensor)-词汇表中输入序列标记的索引。

    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()。

    什么是输入 ID?

  • attention_mask(形状为(batch_size, sequence_length)torch.FloatTensor可选)-用于避免在填充标记索引上执行注意力的掩码。选择的掩码值在[0, 1]中:

    • 1 用于未被“掩码”的标记,

    • 0 用于被“掩码”的标记。

    什么是注意力掩码?

  • token_type_ids(形状为(batch_size, sequence_length)torch.LongTensor可选)-段标记索引,用于指示输入的第一部分和第二部分。索引在[0,1]中选择:

    • 0 对应于句子 A标记,

    • 1 对应于句子 B标记。只有在模型使用带有值的type_vocab_size参数初始化时才能使用此参数

      = 2。此张量中的所有值应始终 < type_vocab_size。

    什么是标记类型 ID?

  • position_ids(形状为(batch_size, sequence_length)torch.LongTensor可选)-每个输入序列标记在位置嵌入中的位置索引。在范围[0, config.max_position_embeddings - 1]中选择。

    什么是位置 ID?

  • head_mask(形状为(num_heads,)(num_layers, num_heads)torch.FloatTensor可选)-用于使自注意力模块中选择的头部失效的掩码。选择的掩码值在[0, 1]中:

    • 1 表示头部未被“掩码”,

    • 0 表示头部被“掩码”。

  • inputs_embeds (torch.FloatTensor,形状为(batch_size, sequence_length, hidden_size)optional) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids。如果您想要更多控制如何将input_ids索引转换为相关向量,而不是使用模型的内部嵌入查找矩阵,这将非常有用。

  • output_attentions (bool, optional) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的attentions

  • output_hidden_states (bool, optional) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的hidden_states

  • return_dict (bool, optional) — 是否返回一个 ModelOutput 而不是一个普通元组。

  • start_positions (torch.LongTensor,形状为(batch_size,), optional) — 用于计算标记跨度的起始位置(索引)的标签。位置被夹紧到序列的长度(sequence_length)。序列外的位置不会被考虑在内以计算损失。

  • end_positions (torch.LongTensor,形状为(batch_size,), optional) — 用于计算标记跨度的结束位置(索引)的标签。位置被夹紧到序列的长度(sequence_length)。序列外的位置不会被考虑在内以计算损失。

返回

transformers.modeling_outputs.QuestionAnsweringModelOutput 或tuple(torch.FloatTensor)

一个 transformers.modeling_outputs.QuestionAnsweringModelOutput 或一个torch.FloatTensor元组(如果传递return_dict=Falseconfig.return_dict=False)包含根据配置(RobertaConfig)和输入的各种元素。

  • loss (torch.FloatTensor,形状为(1,), optional, 当提供labels时返回) — 总跨度提取损失是起始和结束位置的交叉熵之和。

  • start_logits (torch.FloatTensor,形状为(batch_size, sequence_length)) — SoftMax 之前的起始得分。

  • end_logits (torch.FloatTensor,形状为(batch_size, sequence_length)) — SoftMax 之前的结束得分。

  • hidden_states (tuple(torch.FloatTensor), optional, 当传递output_hidden_states=Trueconfig.output_hidden_states=True时返回) — 形状为(batch_size, sequence_length, hidden_size)torch.FloatTensor元组。

    模型在每一层输出的隐藏状态以及可选的初始嵌入输出。

  • attentions (tuple(torch.FloatTensor), optional, 当传递output_attentions=Trueconfig.output_attentions=True时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)torch.FloatTensor元组。

    注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。

RobertaForQuestionAnswering 的前向方法,覆盖了__call__特殊方法。

虽然前向传递的配方需要在此函数内定义,但应该在此之后调用Module实例,而不是在此处调用,因为前者负责运行预处理和后处理步骤,而后者则默默地忽略它们。

示例:

>>> from transformers import AutoTokenizer, RobertaForQuestionAnswering
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("deepset/roberta-base-squad2")
>>> model = RobertaForQuestionAnswering.from_pretrained("deepset/roberta-base-squad2")

>>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"

>>> inputs = tokenizer(question, text, return_tensors="pt")
>>> with torch.no_grad():
...     outputs = model(**inputs)

>>> answer_start_index = outputs.start_logits.argmax()
>>> answer_end_index = outputs.end_logits.argmax()

>>> predict_answer_tokens = inputs.input_ids[0, answer_start_index : answer_end_index + 1]
>>> tokenizer.decode(predict_answer_tokens, skip_special_tokens=True)
' puppet'

>>> # target is "nice puppet"
>>> target_start_index = torch.tensor([14])
>>> target_end_index = torch.tensor([15])

>>> outputs = model(**inputs, start_positions=target_start_index, end_positions=target_end_index)
>>> loss = outputs.loss
>>> round(loss.item(), 2)
0.86

TensorFlow 隐藏 TensorFlow 内容

TFRobertaModel

class transformers.TFRobertaModel

<来源>

( config *inputs **kwargs )

参数

  • config(RobertaConfig)— 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只加载配置。查看 from_pretrained()方法以加载模型权重。

裸 RoBERTa 模型变压器输出原始隐藏状态,没有特定的头部。

此模型继承自 TFPreTrainedModel。查看超类文档以了解库为所有模型实现的通用方法(例如下载或保存、调整输入嵌入、修剪头等)。

此模型还是一个tf.keras.Model子类。将其用作常规的 TF 2.0 Keras 模型,并参考 TF 2.0 文档以获取有关一般用法和行为的所有信息。

transformers中的 TensorFlow 模型和层接受两种格式的输入:

  • 将所有输入作为关键字参数(类似于 PyTorch 模型),或者

  • 将所有输入作为列表、元组或字典放在第一个位置参数中。

支持第二种格式的原因是,当将输入传递给模型和层时,Keras 方法更喜欢这种格式。由于有了这种支持,当使用model.fit()等方法时,应该可以“正常工作” - 只需以model.fit()支持的任何格式传递输入和标签即可!但是,如果您想在 Keras 方法之外使用第二种格式,例如在使用 KerasFunctional API 创建自己的层或模型时,有三种可能性可用于在第一个位置参数中收集所有输入张量:

  • 仅包含input_ids的单个张量,没有其他内容:model(input_ids)

  • 一个长度可变的列表,其中包含一个或多个按照文档字符串中给定顺序的输入张量:model([input_ids, attention_mask])model([input_ids, attention_mask, token_type_ids])

  • 一个字典,其中包含一个或多个与文档字符串中给定输入名称相关联的输入张量:model({"input_ids": input_ids, "token_type_ids": token_type_ids})

请注意,当使用子类化创建模型和层时,您无需担心这些问题,因为您可以像对待任何其他 Python 函数一样传递输入!

call

<来源>

( input_ids: TFModelInputType | None = None attention_mask: np.ndarray | tf.Tensor | None = None token_type_ids: np.ndarray | tf.Tensor | None = None position_ids: np.ndarray | tf.Tensor | None = None head_mask: np.ndarray | tf.Tensor | None = None inputs_embeds: np.ndarray | tf.Tensor | None = None encoder_hidden_states: np.ndarray | tf.Tensor | None = None encoder_attention_mask: np.ndarray | tf.Tensor | None = None past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None use_cache: Optional[bool] = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None training: Optional[bool] = False ) → export const metadata = 'undefined';transformers.modeling_tf_outputs.TFBaseModelOutputWithPoolingAndCrossAttentions or tuple(tf.Tensor)

参数

  • input_ids(形状为(batch_size, sequence_length)Numpy 数组tf.Tensor)— 词汇表中输入序列标记的索引。

    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.call()和 PreTrainedTokenizer.encode()。

    什么是输入 ID?

  • attention_mask(形状为(batch_size, sequence_length)Numpy 数组tf.Tensor可选)— 避免对填充标记索引执行注意力的掩码。选择的掩码值在[0, 1]中:

    • 对于“未屏蔽”的标记为 1,

    • 对于“屏蔽”的标记为 0。

    什么是注意力掩码?

  • token_type_ids (Numpy 数组tf.Tensor,形状为(batch_size, sequence_length)可选) — 指示输入的第一部分和第二部分的段标记索引。索引选择在[0, 1]中:

    • 0 对应于句子 A令牌。

    • 1 对应于句子 B令牌。

    什么是令牌类型 ID?

  • position_ids (Numpy 数组tf.Tensor,形状为(batch_size, sequence_length)可选) — 每个输入序列标记在位置嵌入中的位置索引。选择范围为[0, config.max_position_embeddings - 1]

    什么是位置 ID?

  • head_mask (Numpy 数组tf.Tensor,形状为(num_heads,)(num_layers, num_heads)可选) — 用于使自注意力模块的选定头部失效的掩码。掩码值选择在[0, 1]中:

    • 1 表示头部未被masked

    • 0 表示头部被masked

  • inputs_embeds (tf.Tensor of shape (batch_size, sequence_length, hidden_size), optional) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids。如果您想要更多控制权来将input_ids索引转换为相关向量,而不是使用模型的内部嵌入查找矩阵,这将非常有用。

  • output_attentions (bool可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回的张量中的attentions。此参数仅可在急切模式下使用,在图模式下将使用配置中的值。

  • output_hidden_states (bool可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回的张量中的hidden_states。此参数仅可在急切模式下使用,在图模式下将使用配置中的值。

  • return_dict (bool可选) — 是否返回一个 ModelOutput 而不是一个普通元组。此参数可在急切模式下使用,在图模式下该值将始终设置为 True。

  • training (bool可选,默认为False) — 是否在训练模式下使用模型(一些模块,如 dropout 模块,在训练和评估之间具有不同的行为)。

  • encoder_hidden_states (tf.Tensor,形状为(batch_size, sequence_length, hidden_size)可选) — 编码器最后一层的隐藏状态序列。如果模型配置为解码器,则在交叉注意力中使用。

  • encoder_attention_mask (tf.Tensor,形状为(batch_size, sequence_length)可选) — 避免对编码器输入的填充令牌索引执行注意力的掩码。如果模型配置为解码器,则在交叉注意力中使用。掩码值选择在[0, 1]中:

    • 1 表示未被masked的令牌,

    • 0 表示被masked的令牌。

  • past_key_values (长度为config.n_layersTuple[Tuple[tf.Tensor]]) — 包含注意力块的预计算键和值隐藏状态。可用于加速解码。如果使用了past_key_values,用户可以选择仅输入最后的decoder_input_ids(这些没有将其过去的键值状态提供给此模型的)的形状为(batch_size, 1),而不是所有decoder_input_ids的形状为(batch_size, sequence_length)`。

  • use_cache (bool可选,默认为True) — 如果设置为True,将返回past_key_values键值状态,并可用于加速解码(请参阅past_key_values)。在训练期间设置为False,在生成期间设置为True

返回

transformers.modeling_tf_outputs.TFBaseModelOutputWithPoolingAndCrossAttentions 或tuple(tf.Tensor)

一个 transformers.modeling_tf_outputs.TFBaseModelOutputWithPoolingAndCrossAttentions 或一个tf.Tensor元组(如果传递return_dict=Falseconfig.return_dict=False)包含根据配置(RobertaConfig)和输入的不同元素。

  • last_hidden_state(形状为(batch_size, sequence_length, hidden_size)tf.Tensor)— 模型最后一层输出的隐藏状态序列。

  • pooler_output(形状为(batch_size, hidden_size)tf.Tensor)— 序列第一个标记(分类标记)的最后一层隐藏状态,经过线性层和 Tanh 激活函数进一步处理。线性层的权重是在预训练期间从下一个句子预测(分类)目标中训练的。

    这个输出通常是输入的语义内容的好摘要,您通常最好对整个输入序列的隐藏状态进行平均或池化。

  • past_key_valuesList[tf.Tensor]可选,当传递use_cache=Trueconfig.use_cache=True时返回)— 长度为config.n_layerstf.Tensor列表,每个张量的形状为(2, batch_size, num_heads, sequence_length, embed_size_per_head)

    包含预先计算的隐藏状态(注意力块中的键和值),可用于加速顺序解码。

  • hidden_statestuple(tf.Tensor)可选,当传递output_hidden_states=Trueconfig.output_hidden_states=True时返回)— 形状为(batch_size, sequence_length, hidden_size)tf.Tensor元组(一个用于嵌入的输出 + 一个用于每层的输出)。

    模型在每一层输出的隐藏状态加上初始嵌入输出。

  • attentionstuple(tf.Tensor)可选,当传递output_attentions=Trueconfig.output_attentions=True时返回)— 形状为(batch_size, num_heads, sequence_length, sequence_length)tf.Tensor元组(每层一个)。

    注意力权重,在注意力 softmax 之后,用于计算自注意力头中的加权平均值。

  • cross_attentionstuple(tf.Tensor)可选,当传递output_attentions=Trueconfig.output_attentions=True时返回)— 形状为(batch_size, num_heads, sequence_length, sequence_length)tf.Tensor元组(每层一个)。

    解码器的交叉注意力层的注意力权重,在注意力 softmax 之后,用于计算交叉注意力头中的加权平均值。

TFRobertaModel 的前向方法,覆盖了__call__特殊方法。

虽然前向传递的步骤需要在此函数内定义,但应该在之后调用Module实例,而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例:

>>> from transformers import AutoTokenizer, TFRobertaModel
>>> import tensorflow as tf

>>> tokenizer = AutoTokenizer.from_pretrained("roberta-base")
>>> model = TFRobertaModel.from_pretrained("roberta-base")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf")
>>> outputs = model(inputs)

>>> last_hidden_states = outputs.last_hidden_state

TFRobertaForCausalLM

class transformers.TFRobertaForCausalLM

<来源>

( config: RobertaConfig *inputs **kwargs )

call

<来源>

( input_ids: TFModelInputType | None = None attention_mask: np.ndarray | tf.Tensor | None = None token_type_ids: np.ndarray | tf.Tensor | None = None position_ids: np.ndarray | tf.Tensor | None = None head_mask: np.ndarray | tf.Tensor | None = None inputs_embeds: np.ndarray | tf.Tensor | None = None encoder_hidden_states: np.ndarray | tf.Tensor | None = None encoder_attention_mask: np.ndarray | tf.Tensor | None = None past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None use_cache: Optional[bool] = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None labels: np.ndarray | tf.Tensor | None = None training: Optional[bool] = False ) → export const metadata = 'undefined';transformers.modeling_tf_outputs.TFCausalLMOutputWithCrossAttentions or tuple(tf.Tensor)

参数

  • input_ids(形状为(batch_size, sequence_length)Numpy数组或tf.Tensor)— 词汇表中输入序列标记的索引。

    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.call()和 PreTrainedTokenizer.encode()。

    什么是输入 ID?

  • attention_mask(形状为(batch_size, sequence_length)Numpy数组或tf.Tensor可选) — 用于避免在填充标记索引上执行注意力的掩码。掩码值在[0, 1]中选择:

    • 对于未被masked的标记为 1,

    • 对于被masked的标记为 0。

    什么是注意力掩码?

  • token_type_ids(形状为(batch_size, sequence_length)Numpy数组或tf.Tensor可选) — 指示输入的第一部分和第二部分的段标记索引。索引在[0, 1]中选择:

    • 0 对应于句子 A标记,

    • 1 对应于句子 B标记。

    什么是标记类型 ID?

  • position_ids(形状为(batch_size, sequence_length)Numpy数组或tf.Tensor可选) — 每个输入序列标记在位置嵌入中的位置索引。在范围[0, config.max_position_embeddings - 1]中选择。

    什么是位置 ID?

  • head_mask(形状为(num_heads,)(num_layers, num_heads)Numpy数组或tf.Tensor可选) — 用于使自注意力模块中选择的头部失效的掩码。掩码值在[0, 1]中选择:

    • 1 表示头部未被masked

    • 0 表示头部被masked

  • inputs_embeds(形状为(batch_size, sequence_length, hidden_size)tf.Tensor可选) — 可选地,您可以直接传递嵌入表示而不是传递input_ids。如果您想要更多控制如何将input_ids索引转换为相关向量,而不是使用模型的内部嵌入查找矩阵,这将非常有用。

  • output_attentionsbool可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的attentions。此参数仅可在急切模式下使用,在图模式下将使用配置中的值。

  • output_hidden_statesbool可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的hidden_states。此参数仅可在急切模式下使用,在图模式下将使用配置中的值。

  • return_dictbool可选) — 是否返回 ModelOutput 而不是普通元组。此参数可在急切模式下使用,在图模式下该值将始终设置为 True。

  • trainingbool可选,默认为False) — 是否在训练模式下使用模型(一些模块如 dropout 模块在训练和评估之间有不同的行为)。

  • encoder_hidden_states(形状为(batch_size, sequence_length, hidden_size)tf.Tensor可选) — 编码器最后一层的隐藏状态序列。如果模型配置为解码器,则在交叉注意力中使用。

  • encoder_attention_mask(形状为(batch_size, sequence_length)tf.Tensor可选) — 用于避免在编码器输入的填充标记索引上执行注意力的掩码。如果模型配置为解码器,则在交叉注意力中使用此掩码。掩码值在[0, 1]中选择:

    • 对于未被masked的标记为 1,

    • 对于被masked的标记为 0。

  • past_key_values (Tuple[Tuple[tf.Tensor]],长度为config.n_layers) — 包含注意力块的预计算键和值隐藏状态。可用于加速解码。如果使用了past_key_values,用户可以选择仅输入最后一个decoder_input_ids(那些没有将它们的过去键值状态提供给此模型的)的形状为(batch_size, 1)的张量,而不是形状为(batch_size, sequence_length)的所有decoder_input_ids

  • use_cache (bool可选,默认为True) — 如果设置为True,将返回past_key_values键值状态,并可用于加速解码(参见past_key_values)。在训练期间设置为False,在生成期间设置为True

  • labels (tf.Tensornp.ndarray,形状为(batch_size, sequence_length)可选) — 用于计算交叉熵分类损失的标签。索引应在[0, ..., config.vocab_size - 1]范围内。

返回

transformers.modeling_tf_outputs.TFCausalLMOutputWithCrossAttentions 或 tuple(tf.Tensor)

一个 transformers.modeling_tf_outputs.TFCausalLMOutputWithCrossAttentions 或一个tf.Tensor元组(如果传递了return_dict=Falseconfig.return_dict=False时)包含根据配置(RobertaConfig)和输入的不同元素。

  • loss (tf.Tensor,形状为(n,)可选,其中 n 是未屏蔽标签的数量,当提供labels时返回) — 语言建模损失(用于下一个标记预测)。

  • logits (tf.Tensor,形状为(batch_size, sequence_length, config.vocab_size)) — 语言建模头的预测分数(SoftMax 之前每个词汇标记的分数)。

  • hidden_states (tuple(tf.Tensor)可选,当传递output_hidden_states=Trueconfig.output_hidden_states=True时返回) — 形状为(batch_size, sequence_length, hidden_size)tf.Tensor元组(一个用于嵌入的输出 + 一个用于每个层的输出)。

    每个层的模型输出的隐藏状态加上初始嵌入输出。

  • attentions (tuple(tf.Tensor)可选,当传递output_attentions=Trueconfig.output_attentions=True时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)tf.Tensor元组(每个层一个)。

    注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。

  • cross_attentions (tuple(tf.Tensor)可选,当传递output_attentions=Trueconfig.output_attentions=True时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)tf.Tensor元组(每个层一个)。

    解码器的交叉注意力层的注意力权重,在注意力 softmax 之后,用于计算交叉注意力头中的加权平均值。

  • past_key_values (List[tf.Tensor]可选,当传递use_cache=Trueconfig.use_cache=True时返回) — 长度为config.n_layerstf.Tensor列表,每个张量的形状为(2, batch_size, num_heads, sequence_length, embed_size_per_head)

    包含预先计算的隐藏状态(注意力块中的键和值),可用于加速顺序解码(参见past_key_values输入)。

TFRobertaForCausalLM 的前向方法,覆盖了__call__特殊方法。

虽然前向传递的步骤需要在此函数内定义,但应该在此之后调用Module实例,而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例:

>>> from transformers import AutoTokenizer, TFRobertaForCausalLM
>>> import tensorflow as tf

>>> tokenizer = AutoTokenizer.from_pretrained("roberta-base")
>>> model = TFRobertaForCausalLM.from_pretrained("roberta-base")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf")
>>> outputs = model(inputs)
>>> logits = outputs.logits

TFRobertaForMaskedLM

class transformers.TFRobertaForMaskedLM

<来源>

( config *inputs **kwargs )

参数

  • config(RobertaConfig)— 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只加载配置。查看 from_pretrained()方法以加载模型权重。

RoBERTa 模型顶部带有语言建模头。

此模型继承自 TFPreTrainedModel。查看超类文档以获取库为所有模型实现的通用方法(如下载或保存、调整输入嵌入、修剪头等)。

此模型还是一个tf.keras.Model子类。将其用作常规的 TF 2.0 Keras 模型,并参考 TF 2.0 文档以获取与一般用法和行为相关的所有内容。

transformers中的 TensorFlow 模型和层接受两种格式的输入:

  • 将所有输入作为关键字参数(类似于 PyTorch 模型),或

  • 将所有输入作为列表、元组或字典放在第一个位置参数中。

支持第二种格式的原因是,当将输入传递给模型和层时,Keras 方法更喜欢这种格式。由于这种支持,当使用model.fit()等方法时,应该可以“正常工作” - 只需以model.fit()支持的任何格式传递输入和标签!但是,如果您想在 Keras 方法之外使用第二种格式,比如在使用 KerasFunctional API 创建自己的层或模型时,有三种可能性可以用来收集第一个位置参数中的所有输入张量:

  • 只有input_ids的单个张量,没有其他内容:model(input_ids)

  • 一个长度可变的列表,其中包含按照文档字符串中给定的顺序的一个或多个输入张量:model([input_ids, attention_mask])model([input_ids, attention_mask, token_type_ids])

  • 一个带有一个或多个与文档字符串中给定的输入名称相关联的输入张量的字典:model({"input_ids": input_ids, "token_type_ids": token_type_ids})

请注意,当使用子类化创建模型和层时,您无需担心任何这些,因为您可以像对待任何其他 Python 函数一样传递输入!

call

<来源>

( input_ids: TFModelInputType | None = None attention_mask: np.ndarray | tf.Tensor | None = None token_type_ids: np.ndarray | tf.Tensor | None = None position_ids: np.ndarray | tf.Tensor | None = None head_mask: np.ndarray | tf.Tensor | None = None inputs_embeds: np.ndarray | tf.Tensor | None = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None labels: np.ndarray | tf.Tensor | None = None training: Optional[bool] = False ) → export const metadata = 'undefined';transformers.modeling_tf_outputs.TFMaskedLMOutput or tuple(tf.Tensor)

参数

  • input_ids(形状为(batch_size, sequence_length)Numpy 数组tf.Tensor)— 词汇表中输入序列标记的索引。

    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.call()和 PreTrainedTokenizer.encode()。

    什么是输入 ID?

  • attention_mask(形状为(batch_size, sequence_length)Numpy 数组tf.Tensor可选)— 用于避免在填充标记索引上执行注意力的掩码。选择在[0, 1]范围内的掩码值:

    • 1 表示未被masked的标记。

    • 0 表示被masked的标记。

    什么是注意力掩码?

  • token_type_ids(形状为(batch_size, sequence_length)Numpy数组或tf.Tensor可选) — 段标记索引,指示输入的第一部分和第二部分。索引在[0, 1]中选择:

    • 0 对应于句子 A标记,

    • 1 对应于句子 B标记。

    什么是标记类型 ID?

  • position_ids(形状为(batch_size, sequence_length)Numpy数组或tf.Tensor可选) — 每个输入序列标记在位置嵌入中的位置索引。选择范围为[0, config.max_position_embeddings - 1]

    什么是位置 ID?

  • head_mask(形状为(num_heads,)(num_layers, num_heads)Numpy数组或tf.Tensor可选) — 用于使自注意力模块的选定头部无效的掩码。选择的掩码值在[0, 1]中:

    • 1 表示头部未被屏蔽,

    • 0 表示头部被屏蔽。

  • inputs_embeds(形状为(batch_size, sequence_length, hidden_size)tf.Tensor可选) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids。如果您想要更多控制权来将input_ids索引转换为相关向量,这将很有用,而不是使用模型的内部嵌入查找矩阵。

  • output_attentions可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的attentions。此参数只能在急切模式下使用,在图模式下将使用配置中的值。

  • output_hidden_states可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的hidden_states。此参数只能在急切模式下使用,在图模式下将使用配置中的值。

  • return_dict可选) — 是否返回 ModelOutput 而不是普通元组。此参数可以在急切模式下使用,在图模式下该值将始终设置为 True。

  • trainingbool可选,默认为False) — 是否在训练模式下使用模型(一些模块如 dropout 模块在训练和评估之间有不同的行为)。

  • labels(形状为(batch_size, sequence_length)tf.Tensor可选) — 用于计算掩码语言建模损失的标签。索引应在[-100, 0, ..., config.vocab_size]中(参见input_ids文档字符串)。索引设置为-100的标记将被忽略(掩码),损失仅计算标签在[0, ..., config.vocab_size]中的标记。

返回

transformers.modeling_tf_outputs.TFMaskedLMOutput 或tuple(tf.Tensor)

一个 transformers.modeling_tf_outputs.TFMaskedLMOutput 或一个tf.Tensor元组(如果传递了return_dict=False或当config.return_dict=False时)包含根据配置(RobertaConfig)和输入的各种元素。

  • loss(形状为(n,)tf.Tensor可选,当提供labels时返回,其中 n 是非掩码标签的数量) — 掩码语言建模(MLM)损失。

  • logits(形状为(batch_size, sequence_length, config.vocab_size)tf.Tensor) — 语言建模头的预测分数(SoftMax 之前每个词汇标记的分数)。

  • hidden_states可选,当传递output_hidden_states=True或当config.output_hidden_states=True时返回) — 形状为(batch_size, sequence_length, hidden_size)tf.Tensor元组(一个用于嵌入的输出 + 一个用于每个层的输出)。

    每层模型的隐藏状态加上初始嵌入输出。

  • attentionstuple(tf.Tensor)可选,当传递output_attentions=Trueconfig.output_attentions=True时返回)-形状为(batch_size, num_heads, sequence_length, sequence_length)tf.Tensor元组(每层一个)。

    在注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。

TFRobertaForMaskedLM 的前向方法覆盖了__call__特殊方法。

尽管前向传递的步骤需要在此函数内定义,但应该在此之后调用Module实例,而不是调用此函数,因为前者会负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例:

>>> from transformers import AutoTokenizer, TFRobertaForMaskedLM
>>> import tensorflow as tf

>>> tokenizer = AutoTokenizer.from_pretrained("roberta-base")
>>> model = TFRobertaForMaskedLM.from_pretrained("roberta-base")

>>> inputs = tokenizer("The capital of France is <mask>.", return_tensors="tf")
>>> logits = model(**inputs).logits

>>> # retrieve index of <mask>
>>> mask_token_index = tf.where((inputs.input_ids == tokenizer.mask_token_id)[0])
>>> selected_logits = tf.gather_nd(logits[0], indices=mask_token_index)

>>> predicted_token_id = tf.math.argmax(selected_logits, axis=-1)
>>> tokenizer.decode(predicted_token_id)
' Paris'
>>> labels = tokenizer("The capital of France is Paris.", return_tensors="tf")["input_ids"]
>>> # mask labels of non-<mask> tokens
>>> labels = tf.where(inputs.input_ids == tokenizer.mask_token_id, labels, -100)

>>> outputs = model(**inputs, labels=labels)
>>> round(float(outputs.loss), 2)
0.1

TFRobertaForSequenceClassification

class transformers.TFRobertaForSequenceClassification

<来源>

( config *inputs **kwargs )

参数

  • config(RobertaConfig)-模型配置类,具有模型的所有参数。使用配置文件初始化不会加载与模型关联的权重,只会加载配置。查看 from_pretrained()方法以加载模型权重。

RoBERTa 模型变压器,顶部带有序列分类/回归头(池化输出的线性层),例如用于 GLUE 任务。

此模型继承自 TFPreTrainedModel。检查超类文档以获取库为其所有模型实现的通用方法(例如下载或保存、调整输入嵌入、修剪头等)。

此模型也是tf.keras.Model的子类。将其用作常规的 TF 2.0 Keras 模型,并参考 TF 2.0 文档以获取与一般用法和行为相关的所有内容。

transformers中的 TensorFlow 模型和层接受两种格式的输入:

  • 将所有输入作为关键字参数(类似于 PyTorch 模型),或者

  • 将所有输入作为列表、元组或字典的第一个位置参数。

支持第二种格式的原因是 Keras 方法在将输入传递给模型和层时更喜欢这种格式。由于有了这种支持,当使用model.fit()等方法时,您应该可以“轻松使用”-只需以model.fit()支持的任何格式传递输入和标签即可!但是,如果您想在 Keras 方法之外使用第二种格式,比如在使用 KerasFunctional API 创建自己的层或模型时,您可以使用三种可能性来收集第一个位置参数中的所有输入张量:

  • 只有一个包含input_ids的 Tensor,没有其他内容:model(input_ids)

  • 一个长度可变的列表,其中包含一个或多个按照文档字符串中给定的顺序的输入张量:model([input_ids, attention_mask])model([input_ids, attention_mask, token_type_ids])

  • 一个字典,其中包含一个或多个与文档字符串中给定的输入名称相关联的输入张量:model({"input_ids": input_ids, "token_type_ids": token_type_ids})

请注意,当使用子类化创建模型和层时,您无需担心这些问题,因为您可以像对任何其他 Python 函数一样传递输入!

调用

<来源>

( input_ids: TFModelInputType | None = None attention_mask: np.ndarray | tf.Tensor | None = None token_type_ids: np.ndarray | tf.Tensor | None = None position_ids: np.ndarray | tf.Tensor | None = None head_mask: np.ndarray | tf.Tensor | None = None inputs_embeds: np.ndarray | tf.Tensor | None = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None labels: np.ndarray | tf.Tensor | None = None training: Optional[bool] = False ) → export const metadata = 'undefined';transformers.modeling_tf_outputs.TFSequenceClassifierOutput or tuple(tf.Tensor)

参数

  • input_ids(形状为(batch_size, sequence_length)Numpy 数组tf.Tensor)-词汇表中输入序列标记的索引。

    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.call()和 PreTrainedTokenizer.encode()。

    什么是输入 ID?

  • attention_mask(形状为(batch_size, sequence_length)Numpy数组或tf.Tensor可选)— 用于避免在填充标记索引上执行注意力的蒙版。蒙版值选定在[0, 1]中:

    • 1 用于未屏蔽的标记,

    • 0 用于屏蔽的标记。

    什么是注意力蒙版?

  • token_type_ids(形状为(batch_size, sequence_length)Numpy数组或tf.Tensor可选)— 指示输入的第一部分和第二部分的段标记索引。索引选定在[0, 1]中:

    • 0 对应于句子 A的标记,

    • 1 对应于句子 B的标记。

    什么是令牌类型 ID?

  • position_ids(形状为(batch_size, sequence_length)Numpy数组或tf.Tensor可选)— 每个输入序列标记在位置嵌入中的位置索引。选定范围为[0, config.max_position_embeddings - 1]

    什么是位置 ID?

  • head_mask(形状为(num_heads,)(num_layers, num_heads)Numpy数组或tf.Tensor可选)— 用于使自注意力模块的选定头部失效的蒙版。蒙版值选定在[0, 1]中:

    • 1 表示头部是未屏蔽

    • 0 表示头部是屏蔽

  • inputs_embeds(形状为(batch_size, sequence_length, hidden_size)tf.Tensor可选)— 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids。如果您想要更多控制权来将input_ids索引转换为相关向量,这将非常有用,而不是使用模型的内部嵌入查找矩阵。

  • output_attentionsbool可选)— 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的attentions。此参数仅在急切模式下使用,在图模式中将使用配置中的值。

  • output_hidden_statesbool可选)— 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的hidden_states。此参数仅在急切模式下使用,在图模式中将使用配置中的值。

  • return_dictbool可选)— 是否返回 ModelOutput 而不是普通元组。此参数可在急切模式下使用,在图模式中该值将始终设置为 True。

  • trainingbool可选,默认为False)— 是否在训练模式下使用模型(某些模块,如丢弃模块,在训练和评估之间具有不同的行为)。

  • labels(形状为(batch_size,)tf.Tensor可选)— 用于计算序列分类/回归损失的标签。索引应在[0, ..., config.num_labels - 1]中。如果config.num_labels == 1,则计算回归损失(均方损失),如果config.num_labels > 1,则计算分类损失(交叉熵)。

返回

transformers.modeling_tf_outputs.TFSequenceClassifierOutput 或tuple(tf.Tensor)

一个 transformers.modeling_tf_outputs.TFSequenceClassifierOutput 或一个tf.Tensor元组(如果传递return_dict=Falseconfig.return_dict=False时)包含根据配置(RobertaConfig)和输入的各种元素。

  • loss(形状为(batch_size, )tf.Tensor可选,当提供labels时返回)- 分类(如果config.num_labels==1则为回归)损失。

  • logits(形状为(batch_size, config.num_labels)tf.Tensor)- 分类(如果config.num_labels==1则为回归)得分(SoftMax 之前)。

  • hidden_statestuple(tf.Tensor)可选,当传递output_hidden_states=Trueconfig.output_hidden_states=True时返回)- 形状为(batch_size, sequence_length, hidden_size)tf.Tensor元组(一个用于嵌入的输出 + 一个用于每个层的输出)。

    模型在每个层的输出的隐藏状态加上初始嵌入输出。

  • attentionstuple(tf.Tensor)可选,当传递output_attentions=Trueconfig.output_attentions=True时返回)- 形状为(batch_size, num_heads, sequence_length, sequence_length)tf.Tensor元组(每个层一个)。

    在注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。

TFRobertaForSequenceClassification 的前向方法,覆盖了__call__特殊方法。

虽然前向传递的步骤需要在此函数内定义,但应该在此之后调用Module实例,而不是在此处调用,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例:

>>> from transformers import AutoTokenizer, TFRobertaForSequenceClassification
>>> import tensorflow as tf

>>> tokenizer = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-emotion")
>>> model = TFRobertaForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-emotion")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf")

>>> logits = model(**inputs).logits

>>> predicted_class_id = int(tf.math.argmax(logits, axis=-1)[0])
>>> model.config.id2label[predicted_class_id]
'optimism'
>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = TFRobertaForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-emotion", num_labels=num_labels)

>>> labels = tf.constant(1)
>>> loss = model(**inputs, labels=labels).loss
>>> round(float(loss), 2)
0.08

TFRobertaForMultipleChoice

class transformers.TFRobertaForMultipleChoice

<来源>

( config *inputs **kwargs )

参数

  • config(RobertaConfig)- 模型的所有参数的模型配置类。使用配置文件初始化不会加载与模型相关的权重,只会加载配置。查看 from_pretrained()方法以加载模型权重。

在顶部具有多项选择分类头部的 Roberta 模型(在池化输出的顶部有一个线性层和一个 SoftMax),例如用于 RocStories/SWAG 任务。

此模型继承自 TFPreTrainedModel。查看超类文档以获取库为其所有模型实现的通用方法(如下载或保存、调整输入嵌入、修剪头等)。

此模型还是一个tf.keras.Model子类。将其用作常规的 TF 2.0 Keras 模型,并参考 TF 2.0 文档以获取与一般用法和行为相关的所有内容。

transformers中的 TensorFlow 模型和层接受两种格式的输入:

  • 将所有输入作为关键字参数(类似于 PyTorch 模型),或

  • 将所有输入作为列表、元组或字典放在第一个位置参数中。

支持第二种格式的原因是 Keras 方法在将输入传递给模型和层时更喜欢这种格式。由于有了这种支持,当使用model.fit()等方法时,应该可以“正常工作” - 只需传递您的输入和标签,以任何model.fit()支持的格式!但是,如果您想在 Keras 方法之外使用第二种格式,比如在使用 KerasFunctionalAPI 创建自己的层或模型时,有三种可能性可以用来收集第一个位置参数中的所有输入张量:

  • 一个仅包含input_ids的单个张量,没有其他内容:model(input_ids)

  • 一个长度可变的列表,其中包含一个或多个输入张量,按照文档字符串中给定的顺序:model([input_ids, attention_mask])model([input_ids, attention_mask, token_type_ids])

  • 一个字典,其中包含与文档字符串中给定的输入名称相关联的一个或多个输入张量:model({"input_ids": input_ids, "token_type_ids": token_type_ids})

请注意,当使用子类化创建模型和层时,您无需担心任何这些内容,因为您可以像对待其他 Python 函数一样传递输入!

call

<来源>

( input_ids: TFModelInputType | None = None attention_mask: np.ndarray | tf.Tensor | None = None token_type_ids: np.ndarray | tf.Tensor | None = None position_ids: np.ndarray | tf.Tensor | None = None head_mask: np.ndarray | tf.Tensor | None = None inputs_embeds: np.ndarray | tf.Tensor | None = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None labels: np.ndarray | tf.Tensor | None = None training: Optional[bool] = False ) → export const metadata = 'undefined';transformers.modeling_tf_outputs.TFMultipleChoiceModelOutput or tuple(tf.Tensor)

参数

  • input_ids(形状为(batch_size, num_choices, sequence_length)Numpy数组或tf.Tensor)- 词汇表中输入序列标记的索引。

    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.call()和 PreTrainedTokenizer.encode()。

    什么是输入 ID?

  • attention_mask(形状为(batch_size, num_choices, sequence_length)Numpy数组或tf.Tensor可选)- 用于避免在填充标记索引上执行注意力的掩码。掩码值选择在[0, 1]之间:

    • 1 表示未被masked的标记,

    • 0 表示被masked的标记。

    什么是注意力掩码?

  • token_type_ids(形状为(batch_size, num_choices, sequence_length)Numpy数组或tf.Tensor可选)- 段标记索引,指示输入的第一部分和第二部分。索引在[0, 1]中选择:

    • 0 表示句子 A标记,

    • 1 对应于句子 B标记。

    什么是标记类型 ID?

  • position_ids(形状为(batch_size, num_choices, sequence_length)Numpy数组或tf.Tensor可选)- 每个输入序列标记在位置嵌入中的位置索引。选择范围为[0, config.max_position_embeddings - 1]

    什么是位置 ID?

  • head_mask(形状为(num_heads,)(num_layers, num_heads)Numpy数组或tf.Tensor可选)- 用于使自注意力模块的选定头部失效的掩码。掩码值选择在[0, 1]之间:

    • 1 表示头部未被masked

    • 0 表示头部被masked

  • inputs_embeds(形状为(batch_size, num_choices, sequence_length, hidden_size)tf.Tensor可选)- 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids。如果您想要更多控制权来将input_ids索引转换为相关向量,而不是使用模型的内部嵌入查找矩阵,则这很有用。

  • output_attentionsbool可选)- 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回的张量下的attentions。此参数仅在急切模式下可用,在图模式下将使用配置中的值。

  • output_hidden_states (bool, optional) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的 hidden_states。此参数仅在急切模式下使用,在图模式下将使用配置中的值。

  • return_dict (bool, optional) — 是否返回 ModelOutput 而不是普通元组。此参数可在急切模式下使用,在图模式下该值将始终设置为 True。

  • training (bool, optional, 默认为 False) — 是否在训练模式下使用模型(一些模块如 dropout 模块在训练和评估之间有不同的行为)。

  • labels (tf.Tensor of shape (batch_size,), optional) — 用于计算多项选择分类损失的标签。索引应在 [0, ..., num_choices] 范围内,其中 num_choices 是输入张量第二维的大小。 (参见上面的 input_ids)

返回

transformers.modeling_tf_outputs.TFMultipleChoiceModelOutput 或 tuple(tf.Tensor)

一个 transformers.modeling_tf_outputs.TFMultipleChoiceModelOutput 或一个 tf.Tensor 元组(如果传递 return_dict=Falseconfig.return_dict=False)包含根据配置 (RobertaConfig) 和输入的各种元素。

  • loss (tf.Tensor of shape (batch_size, ), optional, returned when labels is provided) — 分类损失。

  • logits (tf.Tensor of shape (batch_size, num_choices)) — num_choices 是输入张量的第二维。 (见上面的 input_ids)。

    分类得分(SoftMax 之前)。

  • hidden_states (tuple(tf.Tensor), optional, 当传递 output_hidden_states=Trueconfig.output_hidden_states=True 时返回) — 形状为 (batch_size, sequence_length, hidden_size)tf.Tensor 元组。

    模型在每一层输出的隐藏状态以及初始嵌入输出。

  • attentions (tuple(tf.Tensor), optional, 当传递 output_attentions=Trueconfig.output_attentions=True 时返回) — 形状为 (batch_size, num_heads, sequence_length, sequence_length)tf.Tensor 元组。

    在自注意力头中用于计算加权平均值的注意力权重 softmax 后。

TFRobertaForMultipleChoice 的前向方法,覆盖了 __call__ 特殊方法。

虽然前向传递的步骤需要在此函数内定义,但应该在此之后调用 Module 实例而不是这个,因为前者会负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例:

>>> from transformers import AutoTokenizer, TFRobertaForMultipleChoice
>>> import tensorflow as tf

>>> tokenizer = AutoTokenizer.from_pretrained("roberta-base")
>>> model = TFRobertaForMultipleChoice.from_pretrained("roberta-base")

>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
>>> choice0 = "It is eaten with a fork and a knife."
>>> choice1 = "It is eaten while held in the hand."

>>> encoding = tokenizer([prompt, prompt], [choice0, choice1], return_tensors="tf", padding=True)
>>> inputs = {k: tf.expand_dims(v, 0) for k, v in encoding.items()}
>>> outputs = model(inputs)  # batch size is 1

>>> # the linear classifier still needs to be trained
>>> logits = outputs.logits

TFRobertaForTokenClassification

class transformers.TFRobertaForTokenClassification

< source >

( config *inputs **kwargs )

参数

  • config (RobertaConfig) — 包含模型所有参数的模型配置类。使用配置文件初始化不会加载与模型相关的权重,只会加载配置。查看 from_pretrained() 方法以加载模型权重。

RoBERTa 模型,顶部带有一个标记分类头(隐藏状态输出的线性层),例如用于命名实体识别(NER)任务。

此模型继承自 TFPreTrainedModel。检查超类文档以获取库为其所有模型实现的通用方法(例如下载或保存、调整输入嵌入、修剪头等)。

此模型还是一个tf.keras.Model子类。将其用作常规的 TF 2.0 Keras 模型,并参考 TF 2.0 文档以获取有关一般用法和行为的所有相关信息。

transformers中的 TensorFlow 模型和层接受两种格式的输入:

  • 将所有输入作为关键字参数(类似于 PyTorch 模型),或

  • 将所有输入作为列表、元组或字典放在第一个位置参数中。

支持第二种格式的原因是 Keras 方法在将输入传递给模型和层时更喜欢这种格式。由于有了这种支持,当使用model.fit()等方法时,您应该可以“轻松地”进行操作 - 只需以model.fit()支持的任何格式传递您的输入和标签即可!但是,如果您想在 Keras 方法之外使用第二种格式,比如在使用 Keras Functional API 创建自己的层或模型时,有三种可能性可以用来收集第一个位置参数中的所有输入张量:

  • 一个仅包含input_ids的单个张量,没有其他内容:model(input_ids)

  • 一个长度可变的列表,其中包含一个或多个按照文档字符串中给定的顺序的输入张量:model([input_ids, attention_mask])model([input_ids, attention_mask, token_type_ids])

  • 一个字典,其中包含一个或多个与文档字符串中给定的输入名称相关联的输入张量:model({"input_ids": input_ids, "token_type_ids": token_type_ids})

请注意,当使用子类化创建模型和层时,您无需担心这些问题,因为您可以像对待任何其他 Python 函数一样传递输入!

call

<来源>

( input_ids: TFModelInputType | None = None attention_mask: np.ndarray | tf.Tensor | None = None token_type_ids: np.ndarray | tf.Tensor | None = None position_ids: np.ndarray | tf.Tensor | None = None head_mask: np.ndarray | tf.Tensor | None = None inputs_embeds: np.ndarray | tf.Tensor | None = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None labels: np.ndarray | tf.Tensor | None = None training: Optional[bool] = False ) → export const metadata = 'undefined';transformers.modeling_tf_outputs.TFTokenClassifierOutput or tuple(tf.Tensor)

参数

  • input_ids(形状为(batch_size, sequence_length)Numpy数组或tf.Tensor)— 词汇表中输入序列标记的索引。

    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.call()和 PreTrainedTokenizer.encode()。

    什么是输入 ID?

  • attention_mask(形状为(batch_size, sequence_length)Numpy数组或tf.Tensor可选)— 用于避免在填充标记索引上执行注意力的掩码。掩码值选定在[0, 1]之间:

    • 1 表示未被“掩码”的标记,

    • 0 表示被“掩码”的标记。

    什么是注意力掩码?

  • token_type_ids(形状为(batch_size, sequence_length)Numpy数组或tf.Tensor可选)— 段标记索引,用于指示输入的第一部分和第二部分。索引选定在[0, 1]之间:

    • 0 对应于句子 A标记,

    • 1 对应于句子 B标记。

    什么是标记类型 ID?

  • position_ids(形状为(batch_size, sequence_length)Numpy数组或tf.Tensor可选)— 每个输入序列标记在位置嵌入中的位置索引。在范围[0, config.max_position_embeddings - 1]中选择。

    什么是位置 ID?

  • head_mask(形状为(num_heads,)(num_layers, num_heads)Numpy数组或tf.Tensor可选)— 用于使自注意力模块中的选定头部失效的掩码。掩码值选定在[0, 1]之间:

    • 1 表示头部“未被掩码”,

    • 0 表示头部是 masked

  • inputs_embeds (tf.Tensor,形状为 (batch_size, sequence_length, hidden_size)可选) — 可选地,您可以选择直接传递嵌入表示而不是传递 input_ids。如果您想要更多控制如何将 input_ids 索引转换为关联向量,而不是模型的内部嵌入查找矩阵,则这很有用。

  • output_attentions (bool可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的 attentions。此参数仅在急切模式下可用,在图模式下将使用配置中的值。

  • output_hidden_states (bool, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的 hidden_states。此参数仅在急切模式下可用,在图模式下将使用配置中的值。

  • return_dict (bool可选) — 是否返回一个 ModelOutput 而不是一个普通元组。此参数仅在急切模式下可用,在图模式下该值将始终设置为 True。

  • training (bool可选,默认为 False) — 是否在训练模式下使用模型(一些模块,如 dropout 模块,在训练和评估之间有不同的行为)。

  • labels (tf.Tensor,形状为 (batch_size, sequence_length)可选) — 用于计算标记分类损失的标签。索引应在 [0, ..., config.num_labels - 1] 范围内。

返回

transformers.modeling_tf_outputs.TFTokenClassifierOutput 或 tuple(tf.Tensor)

一个 transformers.modeling_tf_outputs.TFTokenClassifierOutput 或一个 tf.Tensor 元组(如果传递了 return_dict=False 或当 config.return_dict=False 时)包含根据配置(RobertaConfig)和输入的不同元素。

  • loss (tf.Tensor,形状为 (n,)可选,其中 n 是未屏蔽标签的数量,在提供 labels 时返回) — 分类损失。

  • logits (tf.Tensor,形状为 (batch_size, sequence_length, config.num_labels)) — 分类分数(SoftMax 之前)。

  • hidden_states (tuple(tf.Tensor)可选,在传递 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — 形状为 (batch_size, sequence_length, hidden_size)tf.Tensor 元组(一个用于嵌入的输出 + 一个用于每个层的输出)。

    模型在每个层的输出状态加上初始嵌入输出。

  • attentions (tuple(tf.Tensor)可选,在传递 output_attentions=True 或当 config.output_attentions=True 时返回) — 形状为 (batch_size, num_heads, sequence_length, sequence_length)tf.Tensor 元组(每层一个)。

    在注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。

TFRobertaForTokenClassification 的前向方法,覆盖了 __call__ 特殊方法。

虽然前向传递的配方需要在此函数内定义,但应该在此之后调用 Module 实例,而不是这个,因为前者负责运行预处理和后处理步骤,而后者则默默地忽略它们。

示例:

>>> from transformers import AutoTokenizer, TFRobertaForTokenClassification
>>> import tensorflow as tf

>>> tokenizer = AutoTokenizer.from_pretrained("ydshieh/roberta-large-ner-english")
>>> model = TFRobertaForTokenClassification.from_pretrained("ydshieh/roberta-large-ner-english")

>>> inputs = tokenizer(
...     "HuggingFace is a company based in Paris and New York", add_special_tokens=False, return_tensors="tf"
... )

>>> logits = model(**inputs).logits
>>> predicted_token_class_ids = tf.math.argmax(logits, axis=-1)

>>> # Note that tokens are classified rather then input words which means that
>>> # there might be more predicted token classes than words.
>>> # Multiple token classes might account for the same word
>>> predicted_tokens_classes = [model.config.id2label[t] for t in predicted_token_class_ids[0].numpy().tolist()]
>>> predicted_tokens_classes
['O', 'ORG', 'ORG', 'O', 'O', 'O', 'O', 'O', 'LOC', 'O', 'LOC', 'LOC']
>>> labels = predicted_token_class_ids
>>> loss = tf.math.reduce_mean(model(**inputs, labels=labels).loss)
>>> round(float(loss), 2)
0.01

TFRobertaForQuestionAnswering

class transformers.TFRobertaForQuestionAnswering

< source >

( config *inputs **kwargs )

参数

  • config(RobertaConfig)- 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只加载配置。查看 from_pretrained()方法以加载模型权重。

RoBERTa 模型,顶部带有一个用于提取式问答任务(如 SQuAD)的跨度分类头(在隐藏状态输出的顶部进行线性层计算span start logitsspan end logits)。

此模型继承自 TFPreTrainedModel。检查超类文档以获取库为所有模型实现的通用方法(例如下载或保存、调整输入嵌入、修剪头等)。

此模型还是一个tf.keras.Model子类。将其用作常规的 TF 2.0 Keras 模型,并参考 TF 2.0 文档以获取与一般用法和行为相关的所有信息。

transformers中的 TensorFlow 模型和层接受两种格式的输入:

  • 将所有输入作为关键字参数(类似于 PyTorch 模型),或

  • 将所有输入作为列表、元组或字典放在第一个位置参数中。

支持第二种格式的原因是 Keras 方法在将输入传递给模型和层时更喜欢这种格式。由于有这种支持,当使用model.fit()等方法时,您应该可以“轻松”地使用 - 只需以model.fit()支持的任何格式传递您的输入和标签!但是,如果您想在 Keras 方法之外使用第二种格式,比如在使用 KerasFunctional API 创建自己的层或模型时,有三种可能性可以用来收集第一个位置参数中的所有输入张量:

  • 一个只包含input_ids的单个张量,没有其他内容:model(input_ids)

  • 一个长度不定的列表,其中包含一个或多个按照文档字符串中给定顺序的输入张量:model([input_ids, attention_mask])model([input_ids, attention_mask, token_type_ids])

  • 一个字典,其中包含一个或多个与文档字符串中给定输入名称相关联的输入张量:model({"input_ids": input_ids, "token_type_ids": token_type_ids})

请注意,当使用子类化创建模型和层时,您无需担心这些问题,因为您可以像对待任何其他 Python 函数一样传递输入!

call

<来源>

( input_ids: TFModelInputType | None = None attention_mask: np.ndarray | tf.Tensor | None = None token_type_ids: np.ndarray | tf.Tensor | None = None position_ids: np.ndarray | tf.Tensor | None = None head_mask: np.ndarray | tf.Tensor | None = None inputs_embeds: np.ndarray | tf.Tensor | None = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None start_positions: np.ndarray | tf.Tensor | None = None end_positions: np.ndarray | tf.Tensor | None = None training: Optional[bool] = False ) → export const metadata = 'undefined';transformers.modeling_tf_outputs.TFQuestionAnsweringModelOutput or tuple(tf.Tensor)

参数

  • input_ids(形状为(batch_size, sequence_length)Numpy数组或tf.Tensor)- 词汇表中输入序列标记的索引。

    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.call()和 PreTrainedTokenizer.encode()。

    什么是输入 ID?

  • attention_mask(形状为(batch_size, sequence_length)Numpy数组或tf.Tensor可选)- 避免在填充标记索引上执行注意力的掩码。掩码值选择在[0, 1]中:

    • 对于未被masked的标记为 1,

    • 对于被masked的标记为 0。

    什么是注意力掩码?

  • token_type_ids(形状为(batch_size, sequence_length)Numpy数组或tf.Tensor可选)- 段标记索引,用于指示输入的第一部分和第二部分。索引选择在[0, 1]中:

    • 0 对应于句子 A的标记,

    • 1 对应于句子 B的标记。

    什么是标记类型 ID?

  • position_ids(形状为(batch_size, sequence_length)Numpy 数组tf.Tensor可选)- 每个输入序列标记的位置嵌入的位置索引。在范围[0, config.max_position_embeddings - 1]中选择。

    什么是位置 ID?

  • head_mask(形状为(num_heads,)(num_layers, num_heads)Numpy 数组tf.Tensor可选)- 用于使自注意力模块的选定头部失效的掩码。掩码值选定在[0, 1]中:

    • 1 表示头部未被“掩盖”,

    • 0 表示头部被“掩盖”。

  • inputs_embeds(形状为(batch_size, sequence_length, hidden_size)tf.Tensor可选)- 可选地,您可以选择直接传递嵌入表示而不是传递input_ids。如果您想要更多控制如何将input_ids索引转换为关联向量,而不是模型的内部嵌入查找矩阵,这将非常有用。

  • output_attentionsbool可选)- 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的attentions。这个参数只能在急切模式下使用,在图模式下将使用配置中的值。

  • output_hidden_statesbool可选)- 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的hidden_states。这个参数只能在急切模式下使用,在图模式下将使用配置中的值。

  • return_dictbool可选)- 是否返回一个 ModelOutput 而不是一个普通的元组。这个参数可以在急切模式下使用,在图模式下该值将始终设置为 True。

  • trainingbool可选,默认为False)- 是否在训练模式下使用模型(一些模块如 dropout 模块在训练和评估之间有不同的行为)。

  • start_positions(形状为(batch_size,)tf.Tensor可选)- 用于计算标记跨度起始位置的标签(索引)。位置被夹紧到序列的长度(sequence_length)。序列外的位置不会被考虑在内以计算损失。

  • end_positions(形状为(batch_size,)tf.Tensor可选)- 用于计算标记分类损失的标签(索引)的跨度结束位置。位置被夹紧到序列的长度(sequence_length)。序列外的位置不会被考虑在内以计算损失。

返回

transformers.modeling_tf_outputs.TFQuestionAnsweringModelOutput 或tuple(tf.Tensor)

一个 transformers.modeling_tf_outputs.TFQuestionAnsweringModelOutput 或一个tf.Tensor元组(如果传递了return_dict=False或当config.return_dict=False时)包括根据配置(RobertaConfig)和输入的不同元素。

  • loss(形状为(batch_size,)tf.Tensor可选,当提供start_positionsend_positions时返回)- 总跨度提取损失是起始和结束位置的交叉熵之和。

  • start_logits(形状为(batch_size, sequence_length)tf.Tensor)- 跨度起始分数(SoftMax 之前)。

  • end_logits(形状为(batch_size, sequence_length)tf.Tensor)- 跨度结束分数(SoftMax 之前)。

  • hidden_statestuple(tf.Tensor)可选,当传递output_hidden_states=Trueconfig.output_hidden_states=True时返回)— 形状为(batch_size, sequence_length, hidden_size)tf.Tensor元组(一个用于嵌入的输出 + 一个用于每一层的输出)。

    模型在每一层的输出处的隐藏状态以及初始嵌入输出。

  • attentionstuple(tf.Tensor)可选,当传递output_attentions=Trueconfig.output_attentions=True时返回)— 形状为(batch_size, num_heads, sequence_length, sequence_length)tf.Tensor元组(每层一个)。

    在自注意力头中用于计算加权平均值的注意力 softmax 之后的注意力权重。

TFRobertaForQuestionAnswering 的前向方法,覆盖__call__特殊方法。

虽然前向传递的配方需要在此函数内定义,但应该在此之后调用Module实例,而不是在此处调用,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例:

>>> from transformers import AutoTokenizer, TFRobertaForQuestionAnswering
>>> import tensorflow as tf

>>> tokenizer = AutoTokenizer.from_pretrained("ydshieh/roberta-base-squad2")
>>> model = TFRobertaForQuestionAnswering.from_pretrained("ydshieh/roberta-base-squad2")

>>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"

>>> inputs = tokenizer(question, text, return_tensors="tf")
>>> outputs = model(**inputs)

>>> answer_start_index = int(tf.math.argmax(outputs.start_logits, axis=-1)[0])
>>> answer_end_index = int(tf.math.argmax(outputs.end_logits, axis=-1)[0])

>>> predict_answer_tokens = inputs.input_ids[0, answer_start_index : answer_end_index + 1]
>>> tokenizer.decode(predict_answer_tokens)
' puppet'
>>> # target is "nice puppet"
>>> target_start_index = tf.constant([14])
>>> target_end_index = tf.constant([15])

>>> outputs = model(**inputs, start_positions=target_start_index, end_positions=target_end_index)
>>> loss = tf.math.reduce_mean(outputs.loss)
>>> round(float(loss), 2)
0.86

JAX 隐藏 JAX 内容

FlaxRobertaModel

class transformers.FlaxRobertaModel

<来源>

( config: RobertaConfig input_shape: Tuple = (1, 1) seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True gradient_checkpointing: bool = False **kwargs )

参数

  • config(RobertaConfig)— 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只加载配置。查看 from_pretrained()方法以加载模型权重。

裸 RoBERTa 模型变压器输出原始隐藏状态,没有特定的头部。

此模型继承自 FlaxPreTrainedModel。查看超类文档以获取库为其所有模型实现的通用方法(例如从 PyTorch 模型下载、保存和转换权重)。

此模型还是flax.linen.Module的子类。将其用作常规的 Flax 亚麻模块,并参考 Flax 文档以获取与一般用法和行为相关的所有内容。

最后,此模型支持内置的 JAX 功能,例如:

__call__

<来源>

( input_ids attention_mask = None token_type_ids = None position_ids = None head_mask = None encoder_hidden_states = None encoder_attention_mask = None params: dict = None dropout_rng: PRNGKey = None train: bool = False output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None past_key_values: dict = None ) → export const metadata = 'undefined';transformers.modeling_flax_outputs.FlaxBaseModelOutputWithPooling or tuple(torch.FloatTensor)

参数

  • input_ids(形状为(batch_size, sequence_length)numpy.ndarray)— 词汇表中输入序列标记的索引。

    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()。

    输入 ID 是什么?

  • attention_mask(形状为(batch_size, sequence_length)numpy.ndarray可选)— 避免在填充标记索引上执行注意力的掩码。选择的掩码值在[0, 1]中:

    • 对于未屏蔽的标记为 1,

    • 对于屏蔽的标记为 0。

    什么是注意力掩码?

  • token_type_ids(形状为(batch_size, sequence_length)numpy.ndarray可选)— 段标记索引,用于指示输入的第一部分和第二部分。索引在[0, 1]中选择:

    • 0 对应于句子 A标记,

    • 1 对应于句子 B标记。

    什么是标记类型 ID?

  • position_ids(形状为(batch_size, sequence_length)numpy.ndarray可选)— 每个输入序列标记在位置嵌入中的位置索引。在范围[0, config.max_position_embeddings - 1]中选择。

  • head_mask(形状为(batch_size, sequence_length)numpy.ndarray,*可选)-- 用于使注意力模块的选定头部失效的掩码。掩码值在[0, 1]中选择:

    • 1 表示头部未被掩盖

    • 0 表示头部被掩盖

  • return_dictbool可选)— 是否返回一个 ModelOutput 而不是一个普通元组。

返回

transformers.modeling_flax_outputs.FlaxBaseModelOutputWithPooling 或tuple(torch.FloatTensor)

一个 transformers.modeling_flax_outputs.FlaxBaseModelOutputWithPooling 或一个torch.FloatTensor元组(如果传递了return_dict=Falseconfig.return_dict=False时)包含根据配置(RobertaConfig)和输入的不同元素。

  • last_hidden_state(形状为(batch_size, sequence_length, hidden_size)jnp.ndarray)— 模型最后一层的隐藏状态的序列。

  • pooler_output(形状为(batch_size, hidden_size)jnp.ndarray)— 序列的最后一层隐藏状态(分类标记)进一步由线性层和 Tanh 激活函数处理。线性层的权重是从预训练期间的下一个句子预测(分类)目标中训练的。

  • hidden_statestuple(jnp.ndarray)可选,当传递output_hidden_states=Trueconfig.output_hidden_states=True时返回)— 形状为(batch_size, sequence_length, hidden_size)jnp.ndarray元组(一个用于嵌入的输出 + 一个用于每一层的输出)。

    模型在每一层输出的隐藏状态加上初始嵌入输出。

  • attentionstuple(jnp.ndarray)可选,当传递output_attentions=Trueconfig.output_attentions=True时返回)— 形状为(batch_size, num_heads, sequence_length, sequence_length)jnp.ndarray元组(每层一个)。

    在注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。

FlaxRobertaPreTrainedModel的前向方法,覆盖了__call__特殊方法。

尽管前向传递的配方需要在此函数内定义,但应该在此之后调用Module实例,而不是这个,因为前者负责运行预处理和后处理步骤,而后者则默默地忽略它们。

示例:

>>> from transformers import AutoTokenizer, FlaxRobertaModel

>>> tokenizer = AutoTokenizer.from_pretrained("roberta-base")
>>> model = FlaxRobertaModel.from_pretrained("roberta-base")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="jax")
>>> outputs = model(**inputs)

>>> last_hidden_states = outputs.last_hidden_state

FlaxRobertaForCausalLM

class transformers.FlaxRobertaForCausalLM

<来源>

( config: RobertaConfig input_shape: Tuple = (1, 1) seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True gradient_checkpointing: bool = False **kwargs )

参数

  • config (RobertaConfig) — 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只会加载配置。查看 from_pretrained()方法以加载模型权重。

在顶部带有语言建模头的 Roberta 模型(隐藏状态输出的线性层),例如用于自回归任务。

此模型继承自 FlaxPreTrainedModel。查看超类文档以获取库为所有模型实现的通用方法(例如从 PyTorch 模型下载、保存和转换权重)。

这个模型也是一个flax.linen.Module子类。将其用作常规的 Flax 亚麻模块,并参考 Flax 文档以获取与一般用法和行为相关的所有内容。

最后,此模型支持 JAX 的固有功能,例如:

__call__

<来源>

( input_ids attention_mask = None token_type_ids = None position_ids = None head_mask = None encoder_hidden_states = None encoder_attention_mask = None params: dict = None dropout_rng: PRNGKey = None train: bool = False output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None past_key_values: dict = None ) → export const metadata = 'undefined';transformers.modeling_flax_outputs.FlaxCausalLMOutputWithCrossAttentions or tuple(torch.FloatTensor)

参数

  • input_ids(形状为(batch_size, sequence_length)numpy.ndarray)— 词汇表中输入序列标记的索引。

    可以使用 AutoTokenizer 获取索引。查看 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()获取详细信息。

    什么是输入 ID?

  • attention_mask(形状为(batch_size, sequence_length)numpy.ndarray可选)— 用于避免在填充标记索引上执行注意力的掩码。掩码值选择在[0, 1]之间:

    • 1 表示未被“掩盖”的标记,

    • 0 表示被“掩盖”的标记。

    注意力掩码是什么?

  • token_type_ids(形状为(batch_size, sequence_length)numpy.ndarray可选)— 指示输入的第一部分和第二部分的段标记索引。索引选择在[0, 1]中:

    • 0 对应于“句子 A”标记,

    • 1 对应于“句子 B”标记。

    什么是标记类型 ID?

  • position_ids(形状为(batch_size, sequence_length)numpy.ndarray可选)— 每个输入序列标记在位置嵌入中的位置索引。在范围[0, config.max_position_embeddings - 1]中选择。

  • head_mask(形状为(batch_size, sequence_length)numpy.ndarray可选)-- 用于使注意力模块中选择的头部无效的掩码。掩码值选择在[0, 1]之间:

    • 1 表示头部未被“掩盖”,

    • 0 表示头部被“掩盖”。

  • return_dictbool可选)— 是否返回 ModelOutput 而不是普通元组。

返回

transformers.modeling_flax_outputs.FlaxCausalLMOutputWithCrossAttentions 或tuple(torch.FloatTensor)

一个 transformers.modeling_flax_outputs.FlaxCausalLMOutputWithCrossAttentions 或一个torch.FloatTensor元组(如果传递return_dict=Falseconfig.return_dict=False)包括根据配置(RobertaConfig)和输入不同元素。

  • logits(形状为(batch_size, sequence_length, config.vocab_size)jnp.ndarray)- 语言建模头的预测分数(SoftMax 之前每个词汇标记的分数)。

  • hidden_statestuple(jnp.ndarray)可选,当传递output_hidden_states=Trueconfig.output_hidden_states=True时返回)- 形状为(batch_size, sequence_length, hidden_size)jnp.ndarray元组(嵌入输出和每一层输出各一个)。

    模型在每一层输出的隐藏状态加上初始嵌入输出。

  • attentionstuple(jnp.ndarray)可选,当传递output_attentions=Trueconfig.output_attentions=True时返回)- 形状为(batch_size, num_heads, sequence_length, sequence_length)jnp.ndarray元组(每层一个)。

    在注意力 SoftMax 之后的自注意力头中的注意力权重,用于计算加权平均值。

  • cross_attentionstuple(jnp.ndarray)可选,当传递output_attentions=Trueconfig.output_attentions=True时返回)- 形状为(batch_size, num_heads, sequence_length, sequence_length)jnp.ndarray元组(每层一个)。

    在注意力 SoftMax 之后的交叉注意力权重,用于计算交叉注意力头中的加权平均值。

  • past_key_valuestuple(tuple(jnp.ndarray))可选,当传递use_cache=Trueconfig.use_cache=True时返回)- 长度为config.n_layersjnp.ndarray元组的元组,每个元组包含自注意力和交叉注意力层的缓存键、值状态,如果模型用于编码器-解码器设置,则相关。仅在config.is_decoder = True时相关。

    包含预先计算的隐藏状态(注意力块中的键和值),可用于加速顺序解码(参见past_key_values输入)。

FlaxRobertaPreTrainedModel的前向方法覆盖了__call__特殊方法。

虽然前向传递的步骤需要在此函数内定义,但应该在此之后调用Module实例,而不是在此处调用,因为前者会处理运行前后处理步骤,而后者会默默地忽略它们。

示例:

>>> from transformers import AutoTokenizer, FlaxRobertaForCausalLM

>>> tokenizer = AutoTokenizer.from_pretrained("roberta-base")
>>> model = FlaxRobertaForCausalLM.from_pretrained("roberta-base")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="np")
>>> outputs = model(**inputs)

>>> # retrieve logts for next token
>>> next_token_logits = outputs.logits[:, -1]

FlaxRobertaForMaskedLM

class transformers.FlaxRobertaForMaskedLM

<来源>

( config: RobertaConfig input_shape: Tuple = (1, 1) seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True gradient_checkpointing: bool = False **kwargs )

参数

  • config(RobertaConfig)- 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只加载配置。查看 from_pretrained()方法以加载模型权重。

RoBERTa 模型顶部带有一个语言建模头。

此模型继承自 FlaxPreTrainedModel。检查超类文档以获取库为所有模型实现的通用方法(例如从 PyTorch 模型下载、保存和转换权重)。

此模型也是一个flax.linen.Module子类。将其用作常规的 Flax linen 模块,并参考 Flax 文档以获取有关一般用法和行为的所有相关信息。

最后,该模型支持 JAX 的固有特性,例如:

__call__

<来源>

( input_ids attention_mask = None token_type_ids = None position_ids = None head_mask = None encoder_hidden_states = None encoder_attention_mask = None params: dict = None dropout_rng: PRNGKey = None train: bool = False output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None past_key_values: dict = None ) → export const metadata = 'undefined';transformers.modeling_flax_outputs.FlaxBaseModelOutputWithPooling or tuple(torch.FloatTensor)

参数

  • input_ids(形状为(batch_size, sequence_length)numpy.ndarray)- 词汇表中输入序列标记的索引。

    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()。

    什么是输入 ID?

  • attention_mask(形状为(batch_size, sequence_length)numpy.ndarray可选)- 避免在填充标记索引上执行注意力的掩码。掩码值选在[0, 1]之间:

    • 1 用于未被“掩码”的标记,

    • 0 用于被“掩码”掉的标记。

    什么是注意力掩码?

  • token_type_ids(形状为(batch_size, sequence_length)numpy.ndarray可选)- 指示输入的第一部分和第二部分的段标记索引。索引在[0, 1]中选择:

    • 0 对应于句子 A标记,

    • 1 对应于句子 B标记。

    什么是标记类型 ID?

  • position_ids(形状为(batch_size, sequence_length)numpy.ndarray可选)- 每个输入序列标记在位置嵌入中的位置索引。在范围[0, config.max_position_embeddings - 1]中选择。

  • head_mask(形状为(batch_size, sequence_length)numpy.ndarray可选)- 用于使注意力模块的选定头部失效的掩码。掩码值选在[0, 1]之间:

    • 1 表示头部未被“掩码”,

    • 0 表示头部被“掩码”。

  • return_dictbool可选)- 是否返回 ModelOutput 而不是普通元组。

返回

transformers.modeling_flax_outputs.FlaxBaseModelOutputWithPooling 或tuple(torch.FloatTensor)

一个 transformers.modeling_flax_outputs.FlaxBaseModelOutputWithPooling 或一个torch.FloatTensor元组(如果传递了return_dict=False或当config.return_dict=False时)包含根据配置(RobertaConfig)和输入的各种元素。

  • last_hidden_state(形状为(batch_size, sequence_length, hidden_size)jnp.ndarray)- 模型最后一层的隐藏状态序列。

  • pooler_output(形状为(batch_size, hidden_size)jnp.ndarray)- 序列中第一个标记(分类标记)的最后一层隐藏状态,经过线性层和 Tanh 激活函数进一步处理。线性层的权重在预训练期间从下一个句子预测(分类)目标中训练得到。

  • hidden_statestuple(jnp.ndarray)可选,当传递了output_hidden_states=True或当config.output_hidden_states=True时返回)- 形状为(batch_size, sequence_length, hidden_size)jnp.ndarray元组(一个用于嵌入的输出 + 一个用于每一层的输出)。

    模型在每一层的输出处的隐藏状态以及初始嵌入输出。

  • attentionstuple(jnp.ndarray)可选,当传递 output_attentions=True 或当 config.output_attentions=True 时返回)— 形状为 (batch_size, num_heads, sequence_length, sequence_length)jnp.ndarray 元组(每层一个)。

    在注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。

FlaxRobertaPreTrainedModel 的前向方法,覆盖了 __call__ 特殊方法。

虽然前向传递的配方需要在此函数内定义,但应该在此之后调用 Module 实例,而不是这个,因为前者负责运行预处理和后处理步骤,而后者则默默地忽略它们。

示例:

>>> from transformers import AutoTokenizer, FlaxRobertaForMaskedLM

>>> tokenizer = AutoTokenizer.from_pretrained("roberta-base")
>>> model = FlaxRobertaForMaskedLM.from_pretrained("roberta-base")

>>> inputs = tokenizer("The capital of France is [MASK].", return_tensors="jax")

>>> outputs = model(**inputs)
>>> logits = outputs.logits

FlaxRobertaForSequenceClassification

transformers.FlaxRobertaForSequenceClassification

<来源>

( config: RobertaConfig input_shape: Tuple = (1, 1) seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True gradient_checkpointing: bool = False **kwargs )

参数

  • config(RobertaConfig)— 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只加载配置。查看 from_pretrained() 方法以加载模型权重。

Roberta 模型变压器,顶部带有序列分类/回归头(在汇总输出之上的线性层),例如用于 GLUE 任务。

此模型继承自 FlaxPreTrainedModel。查看超类文档以了解库为所有模型实现的通用方法(例如从 PyTorch 模型下载、保存和转换权重)。

此模型还是 flax.linen.Module 的子类。将其用作常规的 Flax linen 模块,并参考 Flax 文档以了解与一般用法和行为相关的所有事项。

最后,此模型支持内在的 JAX 特性,例如:

__call__

<来源>

( input_ids attention_mask = None token_type_ids = None position_ids = None head_mask = None encoder_hidden_states = None encoder_attention_mask = None params: dict = None dropout_rng: PRNGKey = None train: bool = False output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None past_key_values: dict = None ) → export const metadata = 'undefined';transformers.modeling_flax_outputs.FlaxSequenceClassifierOutput or tuple(torch.FloatTensor)

参数

  • input_ids(形状为 (batch_size, sequence_length)numpy.ndarray)— 词汇表中输入序列标记的索引。

    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。

    什么是输入 ID?

  • attention_mask(形状为 (batch_size, sequence_length)numpy.ndarray可选)— 遮罩,避免在填充标记索引上执行注意力。遮罩值选择在 [0, 1]

    • 1 表示“未屏蔽”的标记,

    • 0 表示“屏蔽”的标记。

    什么是注意力蒙版?

  • token_type_ids(形状为 (batch_size, sequence_length)numpy.ndarray可选)— 段标记索引,指示输入的第一部分和第二部分。索引选择在 [0, 1]

    • 0 对应于 句子 A 标记。

    • 1 对应于 句子 B 标记。

    什么是 token type IDs?

  • position_ids(形状为(batch_size, sequence_length)numpy.ndarray可选)- 每个输入序列标记在位置嵌入中的位置索引。选择范围为[0, config.max_position_embeddings - 1]

  • head_mask(形状为(batch_size, sequence_length)numpy.ndarray可选)- 用于使注意力模块的选定头部失效的掩码。掩码值选择在[0, 1]之间:

    • 1 表示头部未被masked

    • 0 表示头部是masked

  • return_dictbool可选)- 是否返回 ModelOutput 而不是普通元组。

返回

transformers.modeling_flax_outputs.FlaxSequenceClassifierOutput 或tuple(torch.FloatTensor)

一个 transformers.modeling_flax_outputs.FlaxSequenceClassifierOutput 或一个torch.FloatTensor元组(如果传递return_dict=Falseconfig.return_dict=False)包含根据配置(RobertaConfig)和输入的各种元素。

  • logits(形状为(batch_size, config.num_labels)jnp.ndarray)- 分类(如果config.num_labels==1则为回归)得分(SoftMax 之前)。

  • hidden_statestuple(jnp.ndarray)可选,当传递output_hidden_states=Trueconfig.output_hidden_states=True时返回)- 形状为(batch_size, sequence_length, hidden_size)jnp.ndarray元组(一个用于嵌入的输出,一个用于每一层的输出)。

    模型在每一层的输出处的隐藏状态加上初始嵌入输出。

  • attentionstuple(jnp.ndarray)可选,当传递output_attentions=Trueconfig.output_attentions=True时返回)- 形状为(batch_size, num_heads, sequence_length, sequence_length)jnp.ndarray元组(每层一个)。

    注意力 softmax 后的注意力权重,用于计算自注意力头部中的加权平均值。

FlaxRobertaPreTrainedModel的前向方法覆盖了__call__特殊方法。

虽然前向传递的步骤需要在此函数内定义,但应该在此之后调用Module实例,而不是在此处调用,因为前者会处理运行前后处理步骤,而后者会默默地忽略它们。

示例:

>>> from transformers import AutoTokenizer, FlaxRobertaForSequenceClassification

>>> tokenizer = AutoTokenizer.from_pretrained("roberta-base")
>>> model = FlaxRobertaForSequenceClassification.from_pretrained("roberta-base")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="jax")

>>> outputs = model(**inputs)
>>> logits = outputs.logits

FlaxRobertaForMultipleChoice

class transformers.FlaxRobertaForMultipleChoice

<来源>

( config: RobertaConfig input_shape: Tuple = (1, 1) seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True gradient_checkpointing: bool = False **kwargs )

参数

  • config(RobertaConfig)- 模型配置类,包含模型的所有参数。使用配置文件初始化不会加载与模型相关的权重,只加载配置。查看 from_pretrained()方法以加载模型权重。

罗伯塔模型在顶部带有一个多选分类头部(在池化输出的顶部有一个线性层和一个 softmax),例如用于 RocStories/SWAG 任务。

此模型继承自 FlaxPreTrainedModel。查看超类文档以了解库为所有模型实现的通用方法(例如从 PyTorch 模型下载、保存和转换权重)。

这个模型也是一个flax.linen.Module子类。将其用作常规的 Flax 亚麻模块,并参考 Flax 文档以获取与一般用法和行为相关的所有内容。

最后,这个模型支持 JAX 的固有特性,比如:

__call__

< source >

( input_ids attention_mask = None token_type_ids = None position_ids = None head_mask = None encoder_hidden_states = None encoder_attention_mask = None params: dict = None dropout_rng: PRNGKey = None train: bool = False output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None past_key_values: dict = None ) → export const metadata = 'undefined';transformers.modeling_flax_outputs.FlaxMultipleChoiceModelOutput or tuple(torch.FloatTensor)

参数

  • input_ids (numpy.ndarray,形状为(batch_size, num_choices, sequence_length)) — 词汇表中输入序列标记的索引。

    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()。

    什么是输入 ID?

  • attention_mask (numpy.ndarray,形状为(batch_size, num_choices, sequence_length)可选) — 用于避免在填充标记索引上执行注意力的掩码。掩码值选择在[0, 1]中:

    • 对于未被“掩盖”的标记为 1,

    • 对于被“掩盖”的标记为 0。

    什么是注意力掩码?

  • token_type_ids (numpy.ndarray,形状为(batch_size, num_choices, sequence_length)可选) — 段标记索引,用于指示输入的第一部分和第二部分。索引选择在[0, 1]中:

    • 0 对应于一个sentence A标记,

    • 1 对应于一个sentence B标记。

    什么是标记类型 ID?

  • position_ids (numpy.ndarray,形状为(batch_size, num_choices, sequence_length)可选) — 每个输入序列标记在位置嵌入中的位置索引。在范围[0, config.max_position_embeddings - 1]中选择。

  • head_mask (numpy.ndarray,形状为(batch_size, num_choices, sequence_length)可选) -- 用于使注意力模块的选定头部失效的掩码。掩码值选择在[0, 1]`中:

    • 1 表示头部“未被掩盖”,

    • 0 表示头部“被掩盖”。

  • return_dict (bool, optional) — 是否返回一个 ModelOutput 而不是一个普通的元组。

返回

transformers.modeling_flax_outputs.FlaxMultipleChoiceModelOutput 或 tuple(torch.FloatTensor)

一个 transformers.modeling_flax_outputs.FlaxMultipleChoiceModelOutput 或一个包含各种元素的torch.FloatTensor元组(如果传递了return_dict=False或当config.return_dict=False时)取决于配置(RobertaConfig)和输入。

  • logits (jnp.ndarray,形状为(batch_size, num_choices)) — num_choices 是输入张量的第二维。(参见上面的input_ids)。

    分类分数(SoftMax 之前)。

  • hidden_states (tuple(jnp.ndarray)可选,当传递output_hidden_states=True或当config.output_hidden_states=True时返回) — 形状为(batch_size, sequence_length, hidden_size)jnp.ndarray元组(一个用于嵌入的输出 + 一个用于每个层的输出)。

    模型在每一层输出的隐藏状态以及初始嵌入输出。

  • attentionstuple(jnp.ndarray)可选,当传递output_attentions=Trueconfig.output_attentions=True时返回)—形状为(batch_size, num_heads, sequence_length, sequence_length)jnp.ndarray元组(每层一个)。

    在注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。

FlaxRobertaPreTrainedModel的前向方法覆盖了__call__特殊方法。

虽然前向传递的步骤需要在此函数内定义,但应该在此之后调用Module实例,而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例:

>>> from transformers import AutoTokenizer, FlaxRobertaForMultipleChoice

>>> tokenizer = AutoTokenizer.from_pretrained("roberta-base")
>>> model = FlaxRobertaForMultipleChoice.from_pretrained("roberta-base")

>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
>>> choice0 = "It is eaten with a fork and a knife."
>>> choice1 = "It is eaten while held in the hand."

>>> encoding = tokenizer([prompt, prompt], [choice0, choice1], return_tensors="jax", padding=True)
>>> outputs = model(**{k: v[None, :] for k, v in encoding.items()})

>>> logits = outputs.logits

FlaxRobertaForTokenClassification

class transformers.FlaxRobertaForTokenClassification

<来源>

( config: RobertaConfig input_shape: Tuple = (1, 1) seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True gradient_checkpointing: bool = False **kwargs )

参数

  • config(RobertaConfig)—模型的所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只加载配置。查看 from_pretrained()方法以加载模型权重。

在顶部有一个标记分类头的 Roberta 模型(在隐藏状态输出的顶部有一个线性层),例如用于命名实体识别(NER)任务。

此模型继承自 FlaxPreTrainedModel。查看超类文档以获取库为所有模型实现的通用方法(例如从 PyTorch 模型下载、保存和转换权重)

此模型还是flax.linen.Module的子类。将其用作常规的 Flax linen 模块,并参考 Flax 文档以获取有关一般用法和行为的所有相关信息。

最后,此模型支持 JAX 的固有特性,例如:

__call__

<来源>

( input_ids attention_mask = None token_type_ids = None position_ids = None head_mask = None encoder_hidden_states = None encoder_attention_mask = None params: dict = None dropout_rng: PRNGKey = None train: bool = False output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None past_key_values: dict = None ) → export const metadata = 'undefined';transformers.modeling_flax_outputs.FlaxTokenClassifierOutput or tuple(torch.FloatTensor)

参数

  • input_ids(形状为(batch_size, sequence_length)numpy.ndarray)—词汇表中输入序列标记的索引。

    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()。

    什么是输入 ID?

  • attention_mask(形状为(batch_size, sequence_length)numpy.ndarray可选)—避免在填充标记索引上执行注意力的掩码。掩码值选择在[0, 1]中:

    • 对于未被masked的标记,值为 1,

    • 对于被masked的标记,值为 0。

    什么是注意力掩码?

  • token_type_ids(形状为(batch_size, sequence_length)numpy.ndarray可选)—段标记索引,指示输入的第一部分和第二部分。索引选择在[0, 1]中:

    • 0 对应于句子 A标记,

    • 1 对应于句子 B标记。

    什么是标记类型 ID?

  • position_ids (numpy.ndarray of shape (batch_size, sequence_length), optional) — 每个输入序列标记在位置嵌入中的位置索引。选择范围为[0, config.max_position_embeddings - 1]

  • head_mask (numpy.ndarray of shape (batch_size, sequence_length), optional) -- 用于使注意力模块的选定头部失效的掩码。掩码值选定在[0, 1]`:

    • 1 表示头部未被masked

    • 0 表示头部被masked

  • return_dict (bool, optional) — 是否返回 ModelOutput 而不是普通元组。

返回

transformers.modeling_flax_outputs.FlaxTokenClassifierOutput 或tuple(torch.FloatTensor)

一个 transformers.modeling_flax_outputs.FlaxTokenClassifierOutput 或一个torch.FloatTensor元组(如果传递return_dict=Falseconfig.return_dict=False)包含根据配置(RobertaConfig)和输入的各种元素。

  • logits (jnp.ndarray of shape (batch_size, sequence_length, config.num_labels)) — 分类分数(SoftMax 之前)。

  • hidden_states (tuple(jnp.ndarray), optional, 当传递output_hidden_states=Trueconfig.output_hidden_states=True时返回) — 形状为(batch_size, sequence_length, hidden_size)jnp.ndarray元组(一个用于嵌入的输出 + 一个用于每个层的输出)。

    模型在每个层的输出以及初始嵌入输出的隐藏状态。

  • attentions (tuple(jnp.ndarray), optional, 当传递output_attentions=Trueconfig.output_attentions=True时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)jnp.ndarray元组(每个层一个)。

    在注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。

FlaxRobertaPreTrainedModel的前向方法覆盖了__call__特殊方法。

虽然前向传递的配方需要在此函数内定义,但应该在此之后调用Module实例,而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例:

>>> from transformers import AutoTokenizer, FlaxRobertaForTokenClassification

>>> tokenizer = AutoTokenizer.from_pretrained("roberta-base")
>>> model = FlaxRobertaForTokenClassification.from_pretrained("roberta-base")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="jax")

>>> outputs = model(**inputs)
>>> logits = outputs.logits

FlaxRobertaForQuestionAnswering

class transformers.FlaxRobertaForQuestionAnswering

< source >

( config: RobertaConfig input_shape: Tuple = (1, 1) seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True gradient_checkpointing: bool = False **kwargs )

参数

  • config (RobertaConfig) — 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只加载配置。查看 from_pretrained()方法以加载模型权重。

具有用于提取问答任务的跨度分类头部的 Roberta 模型,例如 SQuAD(在隐藏状态输出之上的线性层,用于计算span start logitsspan end logits)。

此模型继承自 FlaxPreTrainedModel。检查超类文档以了解库为其所有模型实现的通用方法(例如从 PyTorch 模型下载、保存和转换权重)。

该模型还是一个 flax.linen.Module 子类。将其用作常规的 Flax linen 模块,并参考 Flax 文档以获取与一般用法和行为相关的所有事项。

最后,该模型支持 JAX 的固有特性,例如:

__call__

<来源>

( input_ids attention_mask = None token_type_ids = None position_ids = None head_mask = None encoder_hidden_states = None encoder_attention_mask = None params: dict = None dropout_rng: PRNGKey = None train: bool = False output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None past_key_values: dict = None ) → export const metadata = 'undefined';transformers.modeling_flax_outputs.FlaxQuestionAnsweringModelOutput or tuple(torch.FloatTensor)

参数

  • input_ids (numpy.ndarray of shape (batch_size, sequence_length)) — 词汇表中输入序列标记的索引。

    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。

    什么是输入 ID?

  • attention_mask (numpy.ndarray of shape (batch_size, sequence_length), 可选) — 避免在填充标记索引上执行注意力的掩码。掩码值选择在 [0, 1] 中:

    • 1 表示未被屏蔽的标记,

    • 0 表示被屏蔽的标记。

    什么是注意力掩码?

  • token_type_ids (numpy.ndarray of shape (batch_size, sequence_length), 可选) — 指示输入的第一部分和第二部分的段标记索引。索引选择在 [0, 1] 中:

    • 0 对应于 句子 A 标记,

    • 1 对应于 句子 B 标记。

    什么是标记类型 ID?

  • position_ids (numpy.ndarray of shape (batch_size, sequence_length), 可选) — 每个输入序列标记在位置嵌入中的位置索引。在范围 [0, config.max_position_embeddings - 1] 中选择。

  • head_mask (numpy.ndarray of shape (batch_size, sequence_length), 可选) — 用于使注意力模块的选定头部失效的掩码。掩码值选择在 [0, 1] 中:

    • 1 表示头部未被屏蔽,

    • 0 表示头部被屏蔽。

  • return_dict (bool, 可选) — 是否返回 ModelOutput 而不是普通元组。

返回

transformers.modeling_flax_outputs.FlaxQuestionAnsweringModelOutput 或 tuple(torch.FloatTensor)

一个 transformers.modeling_flax_outputs.FlaxQuestionAnsweringModelOutput 或一个 torch.FloatTensor 元组(如果传递了 return_dict=False 或当 config.return_dict=False 时)包含根据配置(RobertaConfig)和输入的各种元素。

  • start_logits (jnp.ndarray of shape (batch_size, sequence_length)) — Span-start scores (before SoftMax).

  • end_logits (jnp.ndarray of shape (batch_size, sequence_length)) — 跨度结束分数(SoftMax 之前)。

  • hidden_states (tuple(jnp.ndarray), 可选, 当传递了 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — 形状为 (batch_size, sequence_length, hidden_size)jnp.ndarray 元组(一个用于嵌入的输出 + 一个用于每个层的输出)。

    模型在每一层输出的隐藏状态加上初始嵌入输出。

  • attentions (tuple(jnp.ndarray)可选,当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — 形状为 (batch_size, num_heads, sequence_length, sequence_length)jnp.ndarray 元组(每层一个)。

    注意力权重在注意力 softmax 之后,用于计算自注意力头中的加权平均值。

FlaxRobertaPreTrainedModel 的前向方法,覆盖了 __call__ 特殊方法。

虽然前向传递的步骤需要在这个函数内定义,但应该在之后调用 Module 实例,而不是这个,因为前者会处理运行前后的处理步骤,而后者会默默地忽略它们。

示例:

>>> from transformers import AutoTokenizer, FlaxRobertaForQuestionAnswering

>>> tokenizer = AutoTokenizer.from_pretrained("roberta-base")
>>> model = FlaxRobertaForQuestionAnswering.from_pretrained("roberta-base")

>>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"
>>> inputs = tokenizer(question, text, return_tensors="jax")

>>> outputs = model(**inputs)
>>> start_scores = outputs.start_logits
>>> end_scores = outputs.end_logits

RoBERTa-PreLayerNorm

原文链接: huggingface.co/docs/transformers/v4.37.2/en/model_doc/roberta-prelayernorm

概述

RoBERTa-PreLayerNorm 模型由 Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng, David Grangier, Michael Auli 在 fairseq: A Fast, Extensible Toolkit for Sequence Modeling 中提出。它与在 fairseq 中使用 --encoder-normalize-before 标志相同。

该论文的摘要如下:

fairseq 是一个开源的序列建模工具包,允许研究人员和开发人员为翻译、摘要、语言建模和其他文本生成任务训练自定义模型。该工具包基于 PyTorch,并支持跨多个 GPU 和机器的分布式训练。我们还支持在现代 GPU 上进行快速混合精度训练和推理。

该模型由 andreasmaden 贡献。原始代码可在 此处 找到。

使用提示

  • 该实现与 Roberta 相同,只是不使用 Add and Norm,而是使用 Norm and AddAddNorm 指的是 Attention Is All You Need 中描述的加法和层归一化。

  • 这与在 fairseq 中使用 --encoder-normalize-before 标志相同。

资源

  • 文本分类任务指南

  • 标记分类任务指南

  • 问答任务指南

  • 因果语言建模任务指南

  • 掩码语言建模任务指南

  • 多项选择任务指南

RobertaPreLayerNormConfig

class transformers.RobertaPreLayerNormConfig

<来源>

( vocab_size = 50265 hidden_size = 768 num_hidden_layers = 12 num_attention_heads = 12 intermediate_size = 3072 hidden_act = 'gelu' hidden_dropout_prob = 0.1 attention_probs_dropout_prob = 0.1 max_position_embeddings = 512 type_vocab_size = 2 initializer_range = 0.02 layer_norm_eps = 1e-12 pad_token_id = 1 bos_token_id = 0 eos_token_id = 2 position_embedding_type = 'absolute' use_cache = True classifier_dropout = None **kwargs )

参数

  • vocab_size (int, 可选, 默认为 50265) — RoBERTa-PreLayerNorm 模型的词汇表大小。定义了在调用 RobertaPreLayerNormModel 或 TFRobertaPreLayerNormModel 时可以由 inputs_ids 表示的不同标记数量。

  • hidden_size (int, 可选, 默认为 768) — 编码器层和池化器层的维度。

  • num_hidden_layers (int, 可选, 默认为 12) — Transformer 编码器中的隐藏层数量。

  • num_attention_heads (int, 可选, 默认为 12) — Transformer 编码器中每个注意力层的注意力头数量。

  • intermediate_size (int, 可选, 默认为 3072) — Transformer 编码器中“中间”(通常称为前馈)层的维度。

  • hidden_act (strCallable, 可选, 默认为 "gelu") — 编码器和池化器中的非线性激活函数(函数或字符串)。如果是字符串,支持 "gelu", "relu", "silu""gelu_new"

  • hidden_dropout_prob (float, 可选, 默认为 0.1) — 嵌入层、编码器和池化器中所有全连接层的丢弃概率。

  • attention_probs_dropout_prob (float, 可选, 默认为 0.1) — 注意力概率的丢弃比例。

  • max_position_embeddings (int, 可选, 默认为 512) — 该模型可能使用的最大序列长度。通常将其设置为较大的值以防万一(例如,512、1024 或 2048)。

  • type_vocab_sizeint可选,默认为 2)—调用 RobertaPreLayerNormModel 或 TFRobertaPreLayerNormModel 时传递的token_type_ids的词汇表大小。

  • initializer_rangefloat可选,默认为 0.02)—用于初始化所有权重矩阵的截断正态初始化器的标准差。

  • layer_norm_epsfloat可选,默认为 1e-12)—层归一化层使用的 epsilon。

  • position_embedding_typestr可选,默认为"absolute")—位置嵌入的类型。选择"absolute""relative_key""relative_key_query"中的一个。对于位置嵌入,请使用"absolute"。有关"relative_key"的更多信息,请参考Self-Attention with Relative Position Representations (Shaw et al.)。有关"relative_key_query"的更多信息,请参考[Improve Transformer Models with Better Relative Position Embeddings (Huang et al.)]中的Method 4 (https://arxiv.org/abs/2009.13658)。

  • is_decoderbool可选,默认为False)—模型是否用作解码器。如果为False,则模型用作编码器。

  • use_cachebool可选,默认为True)—模型是否应返回最后的键/值注意力(不是所有模型都使用)。仅在config.is_decoder=True时相关。

  • classifier_dropoutfloat可选)—分类头的丢失比率。

这是一个配置类,用于存储 RobertaPreLayerNormModel 或 TFRobertaPreLayerNormModel 的配置。根据指定的参数实例化一个 RoBERTa-PreLayerNorm 模型,定义模型架构。使用默认值实例化配置将产生类似于 RoBERTa-PreLayerNorm andreasmadsen/efficient_mlm_m0.40架构的配置。

配置对象继承自 PretrainedConfig,可用于控制模型输出。阅读 PretrainedConfig 的文档以获取更多信息。

示例:

>>> from transformers import RobertaPreLayerNormConfig, RobertaPreLayerNormModel

>>> # Initializing a RoBERTa-PreLayerNorm configuration
>>> configuration = RobertaPreLayerNormConfig()

>>> # Initializing a model (with random weights) from the configuration
>>> model = RobertaPreLayerNormModel(configuration)

>>> # Accessing the model configuration
>>> configuration = model.config

Pytorch 隐藏 Pytorch 内容

RobertaPreLayerNormModel

class transformers.RobertaPreLayerNormModel

<来源>

( config add_pooling_layer = True )

参数

  • config(RobertaPreLayerNormConfig)—模型的所有参数的模型配置类。使用配置文件初始化不会加载与模型相关的权重,只会加载配置。查看 from_pretrained()方法以加载模型权重。

裸 RoBERTa-PreLayerNorm 模型变压器输出原始隐藏状态,没有特定的顶部头。

此模型继承自 PreTrainedModel。检查超类文档以了解库为所有模型实现的通用方法(如下载或保存、调整输入嵌入、修剪头等)。

该模型还是一个 PyTorch torch.nn.Module子类。将其用作常规 PyTorch 模块,并参考 PyTorch 文档以获取有关一般用法和行为的所有相关信息。

该模型可以表现为编码器(仅具有自注意力)以及解码器,此时在自注意力层之间添加了一个交叉注意力层,遵循Attention is all you need一文中描述的架构,作者为 Ashish Vaswani,Noam Shazeer,Niki Parmar,Jakob Uszkoreit,Llion Jones,Aidan N. Gomez,Lukasz Kaiser 和 Illia Polosukhin。

为了表现为解码器,模型需要使用is_decoder参数初始化为True。要在 Seq2Seq 模型中使用,模型需要使用is_decoder参数和add_cross_attention参数都初始化为True;然后期望一个encoder_hidden_states作为前向传递的输入。

.. _注意力就是你所需要的: arxiv.org/abs/1706.03762

forward

<来源>

( input_ids: Optional = None attention_mask: Optional = None token_type_ids: Optional = None position_ids: Optional = None head_mask: Optional = None inputs_embeds: Optional = None encoder_hidden_states: Optional = None encoder_attention_mask: Optional = None past_key_values: Optional = None use_cache: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.modeling_outputs.BaseModelOutputWithPoolingAndCrossAttentions or tuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor of shape (batch_size, sequence_length)) — 输入序列标记在词汇表中的索引。

    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()。

    什么是输入 ID?

  • attention_mask (torch.FloatTensor of shape (batch_size, sequence_length), optional) — 用于避免在填充标记索引上执行注意力的掩码。掩码值在[0, 1]中选择:

    • 1 用于未被掩码的标记,

    • 0 用于被掩码的标记。

    什么是注意力掩码?

  • token_type_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) — 指示输入的第一部分和第二部分的段标记索引。索引在[0,1]中选择:

    • 0 对应于句子 A标记,

    • 1 对应于句子 B标记。只有在模型使用type_vocab_size参数初始化为值时才能使用此参数

      = 2. 此张量中的所有值始终应 < type_vocab_size。

    什么是标记类型 ID?

  • position_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) — 每个输入序列标记在位置嵌入中的位置索引。在范围[0, config.max_position_embeddings - 1]中选择。

    什么是位置 ID?

  • head_mask (torch.FloatTensor of shape (num_heads,) or (num_layers, num_heads), optional) — 用于使自注意力模块中选择的头部失效的掩码。掩码值在[0, 1]中选择:

    • 1 表示头部未被掩码

    • 0 表示头部被掩码

  • inputs_embeds (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional) — 可选地,可以直接传递嵌入表示而不是传递input_ids。如果您想要更多控制如何将input_ids索引转换为相关向量,而不是使用模型的内部嵌入查找矩阵,则这很有用。

  • output_attentions (bool, optional) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量中的attentions

  • output_hidden_states (bool, optional) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量中的hidden_states

  • return_dictbool可选)- 是否返回 ModelOutput 而不是普通元组。

  • encoder_hidden_states(形状为(batch_size, sequence_length, hidden_size)torch.FloatTensor可选)- 编码器最后一层的隐藏状态序列。如果模型配置为解码器,则在交叉注意力中使用。

  • encoder_attention_mask(形状为(batch_size, sequence_length)torch.FloatTensor可选)- 用于避免在编码器输入的填充标记索引上执行注意力的掩码。如果模型配置为解码器,则在交叉注意力中使用。掩码值选择在[0, 1]中。

    • 对于未被掩码的标记为 1,

    • 对于被掩码的标记为 0。

  • past_key_values(长度为config.n_layers的元组(元组(torch.FloatTensor)),每个元组有 4 个形状为(batch_size, num_heads, sequence_length - 1, embed_size_per_head)的张量)- 包含注意力块的预计算键和值隐藏状态。可用于加速解码。

    如果使用past_key_values,用户可以选择仅输入最后的decoder_input_ids(那些没有将它们的过去键值状态提供给此模型的)形状为(batch_size, 1)的标记,而不是形状为(batch_size, sequence_length)的所有decoder_input_ids

  • use_cachebool可选)- 如果设置为True,则返回past_key_values键值状态,并可用于加速解码(参见past_key_values)。

返回

transformers.modeling_outputs.BaseModelOutputWithPoolingAndCrossAttentions 或torch.FloatTensor元组

一个 transformers.modeling_outputs.BaseModelOutputWithPoolingAndCrossAttentions 或一个torch.FloatTensor元组(如果传递return_dict=Falseconfig.return_dict=False)包含根据配置(RobertaPreLayerNormConfig)和输入的各种元素。

  • last_hidden_state(形状为(batch_size, sequence_length, hidden_size)torch.FloatTensor)- 模型最后一层的隐藏状态序列。

  • pooler_output(形状为(batch_size, hidden_size)torch.FloatTensor)- 经过辅助预训练任务中用于处理的层进一步处理后的序列的第一个标记(分类标记)的最后一层隐藏状态。例如,对于 BERT 系列模型,这返回经过线性层和 tanh 激活函数处理后的分类标记。线性层权重是从预训练期间的下一个句子预测(分类)目标中训练的。

  • hidden_statestuple(torch.FloatTensor)可选,当传递output_hidden_states=Trueconfig.output_hidden_states=True时返回)- 形状为(batch_size, sequence_length, hidden_size)torch.FloatTensor元组。

    模型每一层的输出隐藏状态以及可选的初始嵌入输出。

  • attentionstuple(torch.FloatTensor)可选,当传递output_attentions=Trueconfig.output_attentions=True时返回)- 形状为(batch_size, num_heads, sequence_length, sequence_length)torch.FloatTensor元组。

    注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。

  • cross_attentionstuple(torch.FloatTensor)可选,当传递output_attentions=Trueconfig.add_cross_attention=True或当config.output_attentions=True时返回)— 形状为(batch_size, num_heads, sequence_length, sequence_length)torch.FloatTensor元组(每层一个)。

    解码器的交叉注意力层的注意力权重,在注意力 softmax 之后,用于计算交叉注意力头中的加权平均值。

  • past_key_valuestuple(tuple(torch.FloatTensor))可选,当传递use_cache=True或当config.use_cache=True时返回)— 长度为config.n_layerstuple(torch.FloatTensor)元组,每个元组有 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)的张量,如果config.is_encoder_decoder=True还有 2 个额外的形状为(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)的张量。

    包含预先计算的隐藏状态(自注意力块中的键和值,以及在交叉注意力块中,如果config.is_encoder_decoder=True,还可以选择使用)可用于加速顺序解码(请参见past_key_values输入)。

RobertaPreLayerNormModel 的前向方法,覆盖了__call__特殊方法。

虽然前向传递的步骤需要在此函数内定义,但应该在此之后调用Module实例,而不是在此处调用,因为前者负责运行前处理和后处理步骤,而后者会默默地忽略它们。

示例:

>>> from transformers import AutoTokenizer, RobertaPreLayerNormModel
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("andreasmadsen/efficient_mlm_m0.40")
>>> model = RobertaPreLayerNormModel.from_pretrained("andreasmadsen/efficient_mlm_m0.40")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)

>>> last_hidden_states = outputs.last_hidden_state

RobertaPreLayerNormForCausalLM

class transformers.RobertaPreLayerNormForCausalLM

<来源>

( config )

参数

  • config(RobertaPreLayerNormConfig)— 包含模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只加载配置。查看 from_pretrained()方法以加载模型权重。

RoBERTa-PreLayerNorm 模型,在顶部带有语言建模头用于 CLM 微调。

此模型继承自 PreTrainedModel。查看超类文档以了解库为所有模型实现的通用方法(例如下载或保存、调整输入嵌入、修剪头等)。

此模型也是 PyTorch torch.nn.Module子类。将其用作常规 PyTorch 模块,并参考 PyTorch 文档以了解所有与一般用法和行为相关的事项。

forward

<来源>

( input_ids: Optional = None attention_mask: Optional = None token_type_ids: Optional = None position_ids: Optional = None head_mask: Optional = None inputs_embeds: Optional = None encoder_hidden_states: Optional = None encoder_attention_mask: Optional = None labels: Optional = None past_key_values: Tuple = None use_cache: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.modeling_outputs.CausalLMOutputWithCrossAttentions or tuple(torch.FloatTensor)

参数

  • input_ids(形状为(batch_size, sequence_length)torch.LongTensor)— 输入序列标记在词汇表中的索引。

    可以使用 AutoTokenizer 获取索引。查看 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()获取详细信息。

    什么是输入 ID?

  • attention_mask(形状为(batch_size, sequence_length)torch.FloatTensor可选)— 用于避免在填充标记索引上执行注意力的掩码。掩码值选在[0, 1]之间:

    • 对于未被掩码的标记,

    • 0 表示被屏蔽的标记。

    什么是注意力掩码?

  • token_type_ids (torch.LongTensor,形状为(batch_size, sequence_length)可选) — 段标记索引,指示输入的第一部分和第二部分。选择的索引为[0,1]

    • 0 对应于句子 A标记,

    • 1 对应于句子 B标记。只有在模型初始化时使用type_vocab_size参数值时才能使用此参数

      = 2. 此张量中的所有值始终应该 < type_vocab_size。

    什么是标记类型 ID?

  • position_ids (torch.LongTensor,形状为(batch_size, sequence_length)可选) — 每个输入序列标记在位置嵌入中的位置索引。在范围[0, config.max_position_embeddings - 1]中选择。

    什么是位置 ID?

  • head_mask (torch.FloatTensor,形状为(num_heads,)(num_layers, num_heads)可选) — 用于使自注意力模块的选定头部失效的掩码。选择的掩码值为[0, 1]

    • 1 表示头部未被屏蔽,

    • 0 表示头部被屏蔽。

  • inputs_embeds (torch.FloatTensor,形状为(batch_size, sequence_length, hidden_size)可选) — 可选地,可以直接传递嵌入表示而不是传递input_ids。如果您想要更多控制权来将input_ids索引转换为相关向量,而不是使用模型的内部嵌入查找矩阵,这将非常有用。

  • output_attentions (bool, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量中的attentions

  • output_hidden_states (bool, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量中的hidden_states

  • return_dict (bool, 可选) — 是否返回一个 ModelOutput 而不是一个普通的元组。

  • encoder_hidden_states (torch.FloatTensor,形状为(batch_size, sequence_length, hidden_size)可选) — 编码器最后一层的隐藏状态序列。如果模型配置为解码器,则在交叉注意力中使用。

  • encoder_attention_mask (torch.FloatTensor,形状为(batch_size, sequence_length)可选) — 用于避免对编码器输入的填充标记索引执行注意力的掩码。如果模型配置为解码器,则在交叉注意力中使用此掩码。选择的掩码值为[0, 1]

    • 1 表示未被屏蔽的标记,

    • 0 表示被屏蔽的标记。

  • labels (torch.LongTensor,形状为(batch_size, sequence_length)可选) — 用于计算从左到右的语言建模损失(下一个单词预测)的标签。索引应在[-100, 0, ..., config.vocab_size]中(参见input_ids文档字符串)索引设置为-100的标记将被忽略(屏蔽),损失仅计算具有标签在[0, ..., config.vocab_size]中的标记。

  • past_key_values (tuple(tuple(torch.FloatTensor)),长度为config.n_layers,每个元组包含 4 个形状为(batch_size, num_heads, sequence_length - 1, embed_size_per_head)的张量) — 包含注意力块的预计算的键和值隐藏状态。可用于加速解码。

    如果使用了past_key_values,用户可以选择仅输入最后一个形状为(batch_size, 1)decoder_input_ids(这些没有将其过去的键值状态提供给此模型的输入)而不是所有形状为(batch_size, sequence_length)decoder_input_ids

  • use_cache (bool, 可选) — 如果设置为True,则返回past_key_values键值状态,可以用于加速解码(参见past_key_values)。

返回值

transformers.modeling_outputs.CausalLMOutputWithCrossAttentions 或tuple(torch.FloatTensor)

transformers.modeling_outputs.CausalLMOutputWithCrossAttentions 或一个torch.FloatTensor元组(如果传递了return_dict=Falseconfig.return_dict=False时)包括根据配置(RobertaPreLayerNormConfig)和输入的各种元素。

  • loss(形状为(1,)torch.FloatTensor可选,当提供labels时返回)— 语言建模损失(用于下一个标记预测)。

  • logits(形状为(batch_size, sequence_length, config.vocab_size)torch.FloatTensor)— 语言建模头的预测分数(SoftMax 之前每个词汇标记的分数)。

  • hidden_statestuple(torch.FloatTensor)可选,当传递output_hidden_states=Trueconfig.output_hidden_states=True时返回)— 形状为(batch_size, sequence_length, hidden_size)torch.FloatTensor元组(如果模型有嵌入层的输出,还有一个用于每一层的输出)。

    模型在每一层输出的隐藏状态以及可选的初始嵌入输出。

  • attentionstuple(torch.FloatTensor)可选,当传递output_attentions=Trueconfig.output_attentions=True时返回)— 形状为(batch_size, num_heads, sequence_length, sequence_length)torch.FloatTensor元组(每层一个)。

    注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。

  • cross_attentionstuple(torch.FloatTensor)可选,当传递output_attentions=Trueconfig.output_attentions=True时返回)— 形状为(batch_size, num_heads, sequence_length, sequence_length)torch.FloatTensor元组(每层一个)。

    注意力 softmax 后的交叉注意力权重,用于计算交叉注意力头中的加权平均值。

  • past_key_valuestuple(tuple(torch.FloatTensor))可选,当传递use_cache=Trueconfig.use_cache=True时返回)— 长度为config.n_layerstorch.FloatTensor元组的元组,每个元组包含自注意力和交叉注意力层的缓存键、值状态,如果模型用于编码器-解码器设置,则相关。仅在config.is_decoder = True时相关。

    包含预先计算的隐藏状态(注意力块中的键和值),可用于加速顺序解码(查看past_key_values输入)。

RobertaPreLayerNormForCausalLM 的前向方法,覆盖了__call__特殊方法。

虽然前向传递的步骤需要在此函数内定义,但应该在此之后调用Module实例,而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例:

>>> from transformers import AutoTokenizer, RobertaPreLayerNormForCausalLM, AutoConfig
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("andreasmadsen/efficient_mlm_m0.40")
>>> config = AutoConfig.from_pretrained("andreasmadsen/efficient_mlm_m0.40")
>>> config.is_decoder = True
>>> model = RobertaPreLayerNormForCausalLM.from_pretrained("andreasmadsen/efficient_mlm_m0.40", config=config)

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)

>>> prediction_logits = outputs.logits

RobertaPreLayerNormForMaskedLM

class transformers.RobertaPreLayerNormForMaskedLM

<来源>

( config )

参数

  • config(RobertaPreLayerNormConfig)— 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型相关的权重,只加载配置。查看 from_pretrained()方法以加载模型权重。

RoBERTa-PreLayerNorm 模型顶部带有语言建模头。

这个模型继承自 PreTrainedModel。检查超类文档,了解库为所有模型实现的通用方法(例如下载或保存、调整输入嵌入、修剪头等)。

这个模型也是一个 PyTorch torch.nn.Module子类。将其用作常规的 PyTorch 模块,并参考 PyTorch 文档以获取与一般用法和行为相关的所有内容。

forward

< source >

( input_ids: Optional = None attention_mask: Optional = None token_type_ids: Optional = None position_ids: Optional = None head_mask: Optional = None inputs_embeds: Optional = None encoder_hidden_states: Optional = None encoder_attention_mask: Optional = None labels: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.modeling_outputs.MaskedLMOutput or tuple(torch.FloatTensor)

参数

  • input_ids(形状为(batch_size, sequence_length)torch.LongTensor)— 词汇表中输入序列标记的索引。

    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()。

    什么是 input IDs?

  • attention_mask(形状为(batch_size, sequence_length)torch.FloatTensor可选)— 用于避免在填充标记索引上执行注意力的掩码。掩码值选择在[0, 1]中:

    • 1 表示未被masked的标记,

    • 0 表示被masked的标记。

    什么是 attention masks?

  • token_type_ids(形状为(batch_size, sequence_length)torch.LongTensor可选)— 段标记索引,指示输入的第一部分和第二部分。索引在[0,1]中选择:

    • 0 对应于句子 A标记,

    • 1 对应于句子 B标记。当模型使用值为 1 的type_vocab_size参数初始化时,才能使用此参数

      = 2. 此张量中的所有值应始终 < type_vocab_size。

    什么是 token type IDs?

  • position_ids(形状为(batch_size, sequence_length)torch.LongTensor可选)— 每个输入序列标记在位置嵌入中的位置索引。在范围[0, config.max_position_embeddings - 1]中选择。

    什么是 position IDs?

  • head_mask(形状为(num_heads,)(num_layers, num_heads)torch.FloatTensor可选)— 用于使自注意力模块的选定头部失效的掩码。掩码值选择在[0, 1]中:

    • 1 表示头部未被masked

    • 0 表示头部被masked

  • inputs_embeds(形状为(batch_size, sequence_length, hidden_size)torch.FloatTensor可选)— 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids。如果您想要更多控制权来将input_ids索引转换为相关向量,这将非常有用,而不是使用模型的内部嵌入查找矩阵。

  • output_attentionsbool可选)— 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的attentions

  • output_hidden_statesbool可选)— 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的hidden_states

  • return_dict (bool, 可选) — 是否返回 ModelOutput 而不是普通元组。

  • labels (torch.LongTensor,形状为(batch_size, sequence_length)可选) — 用于计算掩码语言建模损失的标签。索引应在[-100, 0, ..., config.vocab_size]内(参见input_ids文档字符串)。索引设置为-100的标记将被忽略(掩码),损失仅计算具有标签在[0, ..., config.vocab_size]中的标记。

  • kwargs (Dict[str, any],可选,默认为{}) — 用于隐藏已弃用的旧参数。

返回

transformers.modeling_outputs.MaskedLMOutput 或tuple(torch.FloatTensor)

transformers.modeling_outputs.MaskedLMOutput 或一个torch.FloatTensor元组(如果传递return_dict=Falseconfig.return_dict=False时)包含根据配置(RobertaPreLayerNormConfig)和输入不同元素。

  • loss (torch.FloatTensor,形状为(1,)可选,当提供labels时返回) — 掩码语言建模(MLM)损失。

  • logits (torch.FloatTensor,形状为(batch_size, sequence_length, config.vocab_size)) — 语言建模头的预测分数(SoftMax 之前每个词汇标记的分数)。

  • hidden_states (tuple(torch.FloatTensor)可选,当传递output_hidden_states=Trueconfig.output_hidden_states=True时返回) — 形状为(batch_size, sequence_length, hidden_size)torch.FloatTensor元组(如果模型有嵌入层,则为嵌入输出的一个+每一层的输出的一个)。

    模型在每一层输出的隐藏状态以及可选的初始嵌入输出。

  • attentions (tuple(torch.FloatTensor)可选,当传递output_attentions=Trueconfig.output_attentions=True时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)torch.FloatTensor元组(每层一个)。

    注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。

RobertaPreLayerNormForMaskedLM 的前向方法,覆盖了__call__特殊方法。

虽然前向传递的方法需要在此函数内定义,但应该在此之后调用Module实例,而不是在此处调用,因为前者会处理运行前后处理步骤,而后者会默默地忽略它们。

示例:

>>> from transformers import AutoTokenizer, RobertaPreLayerNormForMaskedLM
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("andreasmadsen/efficient_mlm_m0.40")
>>> model = RobertaPreLayerNormForMaskedLM.from_pretrained("andreasmadsen/efficient_mlm_m0.40")

>>> inputs = tokenizer("The capital of France is <mask>.", return_tensors="pt")

>>> with torch.no_grad():
...     logits = model(**inputs).logits

>>> # retrieve index of <mask>
>>> mask_token_index = (inputs.input_ids == tokenizer.mask_token_id)[0].nonzero(as_tuple=True)[0]

>>> predicted_token_id = logits[0, mask_token_index].argmax(axis=-1)
>>> tokenizer.decode(predicted_token_id)
' Paris'

>>> labels = tokenizer("The capital of France is Paris.", return_tensors="pt")["input_ids"]
>>> # mask labels of non-<mask> tokens
>>> labels = torch.where(inputs.input_ids == tokenizer.mask_token_id, labels, -100)

>>> outputs = model(**inputs, labels=labels)
>>> round(outputs.loss.item(), 2)
0.69

RobertaPreLayerNormForSequenceClassification

class transformers.RobertaPreLayerNormForSequenceClassification

<来源>

( config )

参数

  • config (RobertaPreLayerNormConfig) — 包含模型所有参数的模型配置类。使用配置文件初始化不会加载与模型相关的权重,只会加载配置。查看 from_pretrained()方法加载模型权重。

带有顶部序列分类/回归头(池化输出顶部的线性层)的 RoBERTa-PreLayerNorm 模型变换器,例如用于 GLUE 任务。

此模型继承自 PreTrainedModel。检查超类文档,了解库为其所有模型实现的通用方法(例如下载或保存、调整输入嵌入、修剪头等)。

此模型也是 PyTorch torch.nn.Module的子类。将其用作常规的 PyTorch 模块,并参考 PyTorch 文档以获取有关一般用法和行为的所有相关信息。

forward

<来源>

( input_ids: Optional = None attention_mask: Optional = None token_type_ids: Optional = None position_ids: Optional = None head_mask: Optional = None inputs_embeds: Optional = None labels: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.modeling_outputs.SequenceClassifierOutput or tuple(torch.FloatTensor)

参数

  • input_ids(形状为(batch_size, sequence_length)torch.LongTensor)— 词汇表中输入序列标记的索引。

    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()。

    什么是输入 ID?

  • attention_mask(形状为(batch_size, sequence_length)torch.FloatTensor可选)— 用于避免在填充标记索引上执行注意力的掩码。掩码值选择在[0, 1]之间:

    • 1 表示未被masked的标记,

    • 0 表示被masked的标记。

    什么是注意力掩码?

  • token_type_ids(形状为(batch_size, sequence_length)torch.LongTensor可选)— 指示输入的第一部分和第二部分的段标记索引。索引选择在[0,1]之间:

    • 0 对应于句子 A标记。

    • 1 对应于句子 B标记。仅当模型使用值为type_vocab_size的参数初始化时才能使用此参数

      = 2. 此张量中的所有值始终应 < type_vocab_size。

    什么是标记类型 ID?

  • position_ids(形状为(batch_size, sequence_length)torch.LongTensor可选)— 每个输入序列标记在位置嵌入中的位置索引。在范围[0, config.max_position_embeddings - 1]中选择。

    什么是位置 ID?

  • head_mask(形状为(num_heads,)(num_layers, num_heads)torch.FloatTensor可选)— 用于使自注意力模块的选定头部失效的掩码。掩码值选择在[0, 1]之间:

    • 1 表示头部未被masked

    • 0 表示头部被masked

  • inputs_embeds(形状为(batch_size, sequence_length, hidden_size)torch.FloatTensor可选)— 可选地,可以直接传递嵌入表示,而不是传递input_ids。如果您想要更多控制如何将input_ids索引转换为相关向量,这将很有用,而不是使用模型的内部嵌入查找矩阵。

  • output_attentionsbool可选)— 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的attentions

  • output_hidden_statesbool可选)— 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的hidden_states

  • return_dictbool可选)— 是否返回 ModelOutput 而不是普通元组。

  • labels(形状为(batch_size,)torch.LongTensor可选)— 用于计算序列分类/回归损失的标签。索引应在[0, ..., config.num_labels - 1]之间。如果config.num_labels == 1,则计算回归损失(均方损失),如果config.num_labels > 1,则计算分类损失(交叉熵)。

返回

transformers.modeling_outputs.SequenceClassifierOutput 或tuple(torch.FloatTensor)

一个 transformers.modeling_outputs.SequenceClassifierOutput 或一个torch.FloatTensor元组(如果传递return_dict=Falseconfig.return_dict=False)包含根据配置(RobertaPreLayerNormConfig)和输入的各种元素。

  • loss(形状为(1,)torch.FloatTensor可选,当提供labels时返回)- 分类(如果 config.num_labels==1 则为回归)损失。

  • logits(形状为(batch_size, config.num_labels)torch.FloatTensor)- 分类(如果 config.num_labels==1 则为回归)得分(在 SoftMax 之前)。

  • hidden_statestuple(torch.FloatTensor)可选,当传递output_hidden_states=Trueconfig.output_hidden_states=True时返回)- 形状为(batch_size, sequence_length, hidden_size)torch.FloatTensor元组(一个用于嵌入层的输出,如果模型有嵌入层,+ 一个用于每个层的输出)。

    模型在每个层的输出处的隐藏状态以及可选的初始嵌入输出。

  • attentionstuple(torch.FloatTensor)可选,当传递output_attentions=Trueconfig.output_attentions=True时返回)- 形状为(batch_size, num_heads, sequence_length, sequence_length)torch.FloatTensor元组(每个层一个)。

    在注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。

RobertaPreLayerNormForSequenceClassification 的前向方法覆盖了__call__特殊方法。

虽然前向传递的步骤需要在此函数内定义,但应该在此之后调用Module实例,而不是在此处调用,因为前者会负责运行预处理和后处理步骤,而后者会默默地忽略它们。

单标签分类示例:

>>> import torch
>>> from transformers import AutoTokenizer, RobertaPreLayerNormForSequenceClassification

>>> tokenizer = AutoTokenizer.from_pretrained("andreasmadsen/efficient_mlm_m0.40")
>>> model = RobertaPreLayerNormForSequenceClassification.from_pretrained("andreasmadsen/efficient_mlm_m0.40")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")

>>> with torch.no_grad():
...     logits = model(**inputs).logits

>>> predicted_class_id = logits.argmax().item()

>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = RobertaPreLayerNormForSequenceClassification.from_pretrained("andreasmadsen/efficient_mlm_m0.40", num_labels=num_labels)

>>> labels = torch.tensor([1])
>>> loss = model(**inputs, labels=labels).loss

多标签分类示例:

>>> import torch
>>> from transformers import AutoTokenizer, RobertaPreLayerNormForSequenceClassification

>>> tokenizer = AutoTokenizer.from_pretrained("andreasmadsen/efficient_mlm_m0.40")
>>> model = RobertaPreLayerNormForSequenceClassification.from_pretrained("andreasmadsen/efficient_mlm_m0.40", problem_type="multi_label_classification")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")

>>> with torch.no_grad():
...     logits = model(**inputs).logits

>>> predicted_class_ids = torch.arange(0, logits.shape[-1])[torch.sigmoid(logits).squeeze(dim=0) > 0.5]

>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = RobertaPreLayerNormForSequenceClassification.from_pretrained(
...     "andreasmadsen/efficient_mlm_m0.40", num_labels=num_labels, problem_type="multi_label_classification"
... )

>>> labels = torch.sum(
...     torch.nn.functional.one_hot(predicted_class_ids[None, :].clone(), num_classes=num_labels), dim=1
... ).to(torch.float)
>>> loss = model(**inputs, labels=labels).loss

RobertaPreLayerNormForMultipleChoice

class transformers.RobertaPreLayerNormForMultipleChoice

<来源>

( config )

参数

  • config(RobertaPreLayerNormConfig)- 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只会加载配置。查看 from_pretrained()方法以加载模型权重。

在顶部带有多选分类头的 RobertaPreLayerNorm 模型(在汇总输出的顶部有一个线性层和一个 softmax),例如用于 RocStories/SWAG 任务。

此模型继承自 PreTrainedModel。查看超类文档以了解库为所有模型实现的通用方法(例如下载或保存,调整输入嵌入,修剪头等)。

此模型还是一个 PyTorch torch.nn.Module子类。将其用作常规 PyTorch 模块,并参考 PyTorch 文档以获取有关一般用法和行为的所有信息。

forward

<来源>

( input_ids: Optional = None token_type_ids: Optional = None attention_mask: Optional = None labels: Optional = None position_ids: Optional = None head_mask: Optional = None inputs_embeds: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.modeling_outputs.MultipleChoiceModelOutput or tuple(torch.FloatTensor)

参数

  • input_ids(形状为(batch_size, num_choices, sequence_length)torch.LongTensor)— 输入序列标记在词汇表中的索引。

    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()。

    什么是输入 ID?

  • attention_mask(形状为(batch_size, num_choices, sequence_length)torch.FloatTensor可选)— 用于避免在填充标记索引上执行注意力的掩码。选择的掩码值在[0, 1]范围内:

    • 1 表示未被masked的标记,

    • 0 表示被masked的标记。

    什么是注意力掩码?

  • token_type_ids(形状为(batch_size, num_choices, sequence_length)torch.LongTensor可选)— 段标记索引,指示输入的第一部分和第二部分。索引在[0,1]中选择:

    • 0 对应于句子 A的标记,

    • 1 对应于句子 B的标记。只有在模型初始化时使用了值为type_vocab_size的参数时才能使用此参数

      = 2. 此张量中的所有值应始终<type_vocab_size

    什么是标记类型 ID?

  • position_ids(形状为(batch_size, num_choices, sequence_length)torch.LongTensor可选)— 每个输入序列标记在位置嵌入中的位置索引。在范围[0, config.max_position_embeddings - 1]中选择。

    什么是位置 ID?

  • head_mask(形状为(num_heads,)(num_layers, num_heads)torch.FloatTensor可选)— 用于使自注意力模块的选定头部失效的掩码。选择的掩码值在[0, 1]中:

    • 1 表示头部是not masked,

    • 0 表示头部是masked

  • inputs_embeds(形状为(batch_size, num_choices, sequence_length, hidden_size)torch.FloatTensor可选)— 可选地,您可以选择直接传递嵌入表示而不是传递input_ids。如果您想要更多控制如何将input_ids索引转换为相关向量,而不是使用模型的内部嵌入查找矩阵,这将很有用。

  • output_attentionsbool可选)— 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的attentions

  • output_hidden_statesbool可选)— 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的hidden_states

  • return_dictbool可选)— 是否返回一个 ModelOutput 而不是一个普通的元组。

  • labels(形状为(batch_size,)torch.LongTensor可选)— 用于计算多项选择分类损失的标签。索引应在[0, ..., num_choices-1]范围内,其中num_choices是输入张量第二维的大小。(参见上面的input_ids

返回

transformers.modeling_outputs.MultipleChoiceModelOutput 或者tuple(torch.FloatTensor)

一个 transformers.modeling_outputs.MultipleChoiceModelOutput 或者一个torch.FloatTensor的元组(如果传递了return_dict=False或者config.return_dict=False时)包含不同的元素,取决于配置(RobertaPreLayerNormConfig)和输入。

  • loss(形状为(1,)torch.FloatTensor可选,当提供labels时返回)— 分类损失。

  • logits(形状为(batch_size, num_choices)torch.FloatTensor)- num_choices是输入张量的第二维。(参见上面的input_ids)。

    分类得分(SoftMax 之前)。

  • hidden_statestuple(torch.FloatTensor)可选,当传递output_hidden_states=Trueconfig.output_hidden_states=True时返回)- 形状为(batch_size, sequence_length, hidden_size)torch.FloatTensor元组(如果模型有嵌入层,则为嵌入的输出+每层的输出)。

    模型在每一层输出的隐藏状态以及可选的初始嵌入输出。

  • attentionstuple(torch.FloatTensor)可选,当传递output_attentions=Trueconfig.output_attentions=True时返回)- 形状为(batch_size, num_heads, sequence_length, sequence_length)torch.FloatTensor元组(每层一个)。

    注意力权重在注意力 SoftMax 之后,用于计算自注意力头中的加权平均值。

RobertaPreLayerNormForMultipleChoice 的前向方法,覆盖了__call__特殊方法。

虽然前向传递的步骤需要在此函数内定义,但应该在此之后调用Module实例,而不是在此处调用,因为前者会负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例:

>>> from transformers import AutoTokenizer, RobertaPreLayerNormForMultipleChoice
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("andreasmadsen/efficient_mlm_m0.40")
>>> model = RobertaPreLayerNormForMultipleChoice.from_pretrained("andreasmadsen/efficient_mlm_m0.40")

>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
>>> choice0 = "It is eaten with a fork and a knife."
>>> choice1 = "It is eaten while held in the hand."
>>> labels = torch.tensor(0).unsqueeze(0)  # choice0 is correct (according to Wikipedia ;)), batch size 1

>>> encoding = tokenizer([prompt, prompt], [choice0, choice1], return_tensors="pt", padding=True)
>>> outputs = model(**{k: v.unsqueeze(0) for k, v in encoding.items()}, labels=labels)  # batch size is 1

>>> # the linear classifier still needs to be trained
>>> loss = outputs.loss
>>> logits = outputs.logits

RobertaPreLayerNormForTokenClassification

class transformers.RobertaPreLayerNormForTokenClassification

<来源>

( config )

参数

  • config(RobertaPreLayerNormConfig)- 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型相关的权重,只加载配置。查看 from_pretrained()方法以加载模型权重。

带有顶部标记分类头的 RobertaPreLayerNorm 模型(隐藏状态输出的线性层顶部),例如用于命名实体识别(NER)任务。

这个模型继承自 PreTrainedModel。查看超类文档以获取库为所有模型实现的通用方法(如下载或保存、调整输入嵌入、修剪头等)。

这个模型也是 PyTorch torch.nn.Module子类。将其用作常规的 PyTorch 模块,并参考 PyTorch 文档以获取与一般用法和行为相关的所有内容。

forward

<来源>

( input_ids: Optional = None attention_mask: Optional = None token_type_ids: Optional = None position_ids: Optional = None head_mask: Optional = None inputs_embeds: Optional = None labels: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.modeling_outputs.TokenClassifierOutput or tuple(torch.FloatTensor)

参数

  • input_ids(形状为(batch_size, sequence_length)torch.LongTensor)- 词汇表中输入序列标记的索引。

    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()。

    什么是输入 ID?

  • attention_mask(形状为(batch_size, sequence_length)torch.FloatTensor可选)- 避免在填充标记索引上执行注意力的掩码。在[0, 1]中选择的掩码值:

    • 1 用于未被“掩码”掩盖的标记,

    • 0 用于被“掩码”掩盖的标记。

    什么是注意力掩码?

  • token_type_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) — 段标记索引,指示输入的第一部分和第二部分。索引在[0,1]范围内选择:

    • 0 对应于 句子 A 的标记,

    • 1 对应于 句子 B 的标记。只有在模型使用值为type_vocab_sizetype_vocab_size参数初始化时才能使用此参数

      = 2. 此张量中的所有值始终应 < type_vocab_size。

    什么是标记类型 ID?

  • position_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) — 每个输入序列标记在位置嵌入中的位置索引。选择范围为[0, config.max_position_embeddings - 1]

    什么是位置 ID?

  • head_mask (torch.FloatTensor of shape (num_heads,) or (num_layers, num_heads), optional) — 用于使自注意力模块的选定头部失效的掩码。掩码值选定在[0, 1]范围内:

    • 1 表示头部未被掩盖,

    • 0 表示头部被掩盖。

  • inputs_embeds (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids。如果您想要更多控制权来将input_ids索引转换为相关向量,而不是使用模型的内部嵌入查找矩阵,这将非常有用。

  • output_attentions (bool, optional) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的attentions

  • output_hidden_states (bool, optional) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的hidden_states

  • return_dict (bool, optional) — 是否返回一个 ModelOutput 而不是一个普通元组。

  • labels (torch.LongTensor of shape (batch_size, sequence_length), optional) — 用于计算标记分类损失的标签。索引应在[0, ..., config.num_labels - 1]范围内。

返回

transformers.modeling_outputs.TokenClassifierOutput 或 tuple(torch.FloatTensor)

一个 transformers.modeling_outputs.TokenClassifierOutput 或一个torch.FloatTensor元组(如果传递return_dict=Falseconfig.return_dict=False时)包含根据配置(RobertaPreLayerNormConfig)和输入的各种元素。

  • loss (torch.FloatTensor of shape (1,), optional, 当提供labels时返回) — 分类损失。

  • logits (torch.FloatTensor of shape (batch_size, sequence_length, config.num_labels)) — 分类得分(SoftMax 之前)。

  • hidden_states (tuple(torch.FloatTensor), optional, 当传递output_hidden_states=Trueconfig.output_hidden_states=True时返回) — 形状为(batch_size, sequence_length, hidden_size)torch.FloatTensor元组(如果模型具有嵌入层,则为嵌入输出的输出 + 每层的输出)。

    模型在每一层输出处的隐藏状态以及可选的初始嵌入输出。

  • attentions (tuple(torch.FloatTensor), optional, 当传递output_attentions=Trueconfig.output_attentions=True时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)torch.FloatTensor元组(每层一个)。

    注意力权重在注意力 softmax 之后,用于计算自注意力头中的加权平均值。

RobertaPreLayerNormForTokenClassification 的前向方法,覆盖了__call__特殊方法。

虽然前向传递的步骤需要在此函数内定义,但应该在此之后调用Module实例,而不是这个,因为前者会处理运行前后处理步骤,而后者会默默地忽略它们。

示例:

>>> from transformers import AutoTokenizer, RobertaPreLayerNormForTokenClassification
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("andreasmadsen/efficient_mlm_m0.40")
>>> model = RobertaPreLayerNormForTokenClassification.from_pretrained("andreasmadsen/efficient_mlm_m0.40")

>>> inputs = tokenizer(
...     "HuggingFace is a company based in Paris and New York", add_special_tokens=False, return_tensors="pt"
... )

>>> with torch.no_grad():
...     logits = model(**inputs).logits

>>> predicted_token_class_ids = logits.argmax(-1)

>>> # Note that tokens are classified rather then input words which means that
>>> # there might be more predicted token classes than words.
>>> # Multiple token classes might account for the same word
>>> predicted_tokens_classes = [model.config.id2label[t.item()] for t in predicted_token_class_ids[0]]

>>> labels = predicted_token_class_ids
>>> loss = model(**inputs, labels=labels).loss

RobertaPreLayerNormForQuestionAnswering

class transformers.RobertaPreLayerNormForQuestionAnswering

<来源>

( config )

参数

  • config(RobertaPreLayerNormConfig)- 模型的所有参数的模型配置类。使用配置文件初始化不会加载与模型相关的权重,只会加载配置。查看 from_pretrained()方法以加载模型权重。

具有用于提取问答任务(如 SQuAD)的跨度分类头的 RobertaPreLayerNorm 模型(在隐藏状态输出之上的线性层,用于计算span start logitsspan end logits)。

此模型继承自 PreTrainedModel。检查超类文档,了解库为其所有模型实现的通用方法(如下载或保存、调整输入嵌入、修剪头等)。

此模型也是 PyTorch torch.nn.Module子类。将其用作常规 PyTorch 模块,并参考 PyTorch 文档以获取与一般用法和行为相关的所有事项。

forward

<来源>

( input_ids: Optional = None attention_mask: Optional = None token_type_ids: Optional = None position_ids: Optional = None head_mask: Optional = None inputs_embeds: Optional = None start_positions: Optional = None end_positions: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.modeling_outputs.QuestionAnsweringModelOutput or tuple(torch.FloatTensor)

参数

  • input_ids(形状为(batch_size, sequence_length)torch.LongTensor)- 词汇表中输入序列标记的索引。

    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()。

    什么是输入 ID?

  • attention_mask(形状为(batch_size, sequence_length)torch.FloatTensor可选)- 用于避免在填充标记索引上执行注意力的掩码。掩码值在[0, 1]中选择:

    • 1 表示未被masked的标记,

    • 0 表示被masked的标记。

    什么是注意力掩码?

  • token_type_ids(形状为(batch_size, sequence_length)torch.LongTensor可选)- 段标记索引,指示输入的第一部分和第二部分。索引在[0,1]中选择:

    • 0 对应于句子 A标记,

    • 1 对应于句子 B标记。只有在模型初始化时使用带有值的type_vocab_size参数时才能使用此参数

      = 2. 此张量中的所有值应始终 < type_vocab_size。

    什么是标记类型 ID?

  • position_ids(形状为(batch_size, sequence_length)torch.LongTensor可选)- 每个输入序列标记在位置嵌入中的位置索引。在范围[0, config.max_position_embeddings - 1]中选择。

    什么是位置 ID?

  • head_mask (torch.FloatTensor of shape (num_heads,) or (num_layers, num_heads), optional) — 用于使自注意力模块中选择的头部失效的掩码。掩码值选在[0, 1]范围内:

    • 1 表示头部未被masked

    • 0 表示头部被masked

  • inputs_embeds (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids。如果您想要更多控制权来将input_ids索引转换为相关向量,而不是使用模型的内部嵌入查找矩阵,这将非常有用。

  • output_attentions (bool, optional) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的attentions

  • output_hidden_states (bool, optional) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的hidden_states

  • return_dict (bool, optional) — 是否返回一个 ModelOutput 而不是一个普通的元组。

  • start_positions (torch.LongTensor of shape (batch_size,), optional) — 用于计算标记分类损失的标记范围起始位置的位置(索引)标签。位置被夹紧到序列的长度(sequence_length)。序列外的位置不会被考虑在内计算损失。

  • end_positions (torch.LongTensor of shape (batch_size,), optional) — 用于计算标记范围结束位置的位置(索引)标签,以计算标记分类损失。位置被夹紧到序列的长度(sequence_length)。序列外的位置不会被考虑在内计算损失。

返回值

transformers.modeling_outputs.QuestionAnsweringModelOutput 或 tuple(torch.FloatTensor)

一个 transformers.modeling_outputs.QuestionAnsweringModelOutput 或一个torch.FloatTensor元组(如果传递了return_dict=False或当config.return_dict=False时)包含根据配置(RobertaPreLayerNormConfig)和输入的不同元素。

  • loss (torch.FloatTensor of shape (1,), optional, returned when labels is provided) — 总跨度提取损失是起始位置和结束位置的交叉熵之和。

  • start_logits (torch.FloatTensor of shape (batch_size, sequence_length)) — 跨度开始分数(SoftMax 之前)。

  • end_logits (torch.FloatTensor of shape (batch_size, sequence_length)) — 跨度结束分数(SoftMax 之前)。

  • hidden_states (tuple(torch.FloatTensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) — 一个元组,包含torch.FloatTensor(一个用于嵌入的输出,如果模型有一个嵌入层,+ 一个用于每一层的输出)的形状为(batch_size, sequence_length, hidden_size)

    模型在每一层输出的隐藏状态以及可选的初始嵌入输出。

  • attentions (tuple(torch.FloatTensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) — 一个元组,包含torch.FloatTensor(每一层一个)的形状为(batch_size, num_heads, sequence_length, sequence_length)

    在自注意力头中用于计算加权平均值的注意力 softmax 后的注意力权重。

RobertaPreLayerNormForQuestionAnswering 的前向方法,覆盖了__call__特殊方法。

虽然前向传递的步骤需要在此函数内定义,但应该在此之后调用Module实例,而不是在此处调用,因为前者会处理运行前后处理步骤,而后者会默默地忽略它们。

示例:

>>> from transformers import AutoTokenizer, RobertaPreLayerNormForQuestionAnswering
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("andreasmadsen/efficient_mlm_m0.40")
>>> model = RobertaPreLayerNormForQuestionAnswering.from_pretrained("andreasmadsen/efficient_mlm_m0.40")

>>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"

>>> inputs = tokenizer(question, text, return_tensors="pt")
>>> with torch.no_grad():
...     outputs = model(**inputs)

>>> answer_start_index = outputs.start_logits.argmax()
>>> answer_end_index = outputs.end_logits.argmax()

>>> predict_answer_tokens = inputs.input_ids[0, answer_start_index : answer_end_index + 1]

>>> # target is "nice puppet"
>>> target_start_index = torch.tensor([14])
>>> target_end_index = torch.tensor([15])

>>> outputs = model(**inputs, start_positions=target_start_index, end_positions=target_end_index)
>>> loss = outputs.loss

TensorFlow 隐藏 TensorFlow 内容

TFRobertaPreLayerNormModel

class transformers.TFRobertaPreLayerNormModel

<来源>

( config *inputs **kwargs )

参数

  • config(RobertaPreLayerNormConfig)— 包含模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只会加载配置。查看 from_pretrained()方法以加载模型权重。

RoBERTa-PreLayerNorm 模型,输出原始隐藏状态,没有特定的头部。

该模型继承自 TFPreTrainedModel。查看超类文档以了解库实现的通用方法(如下载或保存、调整输入嵌入、修剪头等)。

该模型也是tf.keras.Model的子类。将其用作常规的 TF 2.0 Keras 模型,并参考 TF 2.0 文档以了解与一般用法和行为相关的所有事项。

transformers中的 TensorFlow 模型和层接受两种格式的输入:

  • 将所有输入作为关键字参数(类似于 PyTorch 模型),或

  • 将所有输入作为列表、元组或字典放在第一个位置参数中。

支持第二种格式的原因是,Keras 方法在将输入传递给模型和层时更喜欢这种格式。由于这种支持,当使用model.fit()等方法时,应该“只需工作” - 只需以model.fit()支持的任何格式传递输入和标签!但是,如果您想在 Keras 方法之外使用第二种格式,例如在使用 KerasFunctionalAPI 创建自己的层或模型时,有三种可能性可用于收集所有输入张量在第一个位置参数中:

  • 只有一个包含input_ids的张量,没有其他内容:model(input_ids)

  • 一个长度可变的列表,其中包含按照文档字符串中给定的顺序的一个或多个输入张量:model([input_ids, attention_mask])model([input_ids, attention_mask, token_type_ids])

  • 一个包含与文档字符串中给定的输入名称相关联的一个或多个输入张量的字典:model({"input_ids": input_ids, "token_type_ids": token_type_ids})

请注意,在使用子类化创建模型和层时,您无需担心这些内容,因为您可以像对待任何其他 Python 函数一样传递输入!

call

<来源>

( input_ids: TFModelInputType | None = None attention_mask: np.ndarray | tf.Tensor | None = None token_type_ids: np.ndarray | tf.Tensor | None = None position_ids: np.ndarray | tf.Tensor | None = None head_mask: np.ndarray | tf.Tensor | None = None inputs_embeds: np.ndarray | tf.Tensor | None = None encoder_hidden_states: np.ndarray | tf.Tensor | None = None encoder_attention_mask: np.ndarray | tf.Tensor | None = None past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None use_cache: Optional[bool] = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None training: Optional[bool] = False ) → export const metadata = 'undefined';transformers.modeling_tf_outputs.TFBaseModelOutputWithPoolingAndCrossAttentions or tuple(tf.Tensor)

参数

  • input_ids(形状为(batch_size, sequence_length)Numpy数组或tf.Tensor)— 输入序列标记在词汇表中的索引。

    可以使用 AutoTokenizer 获取索引。查看 PreTrainedTokenizer.call()和 PreTrainedTokenizer.encode()以获取详细信息。

    什么是输入 ID?

  • attention_mask(形状为(batch_size, sequence_length)Numpy数组或tf.Tensor可选) — 用于避免在填充标记索引上执行注意力。掩码值选定在[0, 1]范围内:

    • 1 表示未屏蔽的标记,

    • 0 表示屏蔽的标记。

    什么是注意力掩码?

  • token_type_ids(形状为(batch_size, sequence_length)Numpy数组或tf.Tensor可选) — 指示输入的第一部分和第二部分的段标记索引。索引选定在[0, 1]范围内:

    • 0 对应于句子 A标记,

    • 1 对应于句子 B标记。

    什么是标记类型 ID?

  • position_ids(形状为(batch_size, sequence_length)Numpy数组或tf.Tensor可选) — 每个输入序列标记在位置嵌入中的位置索引。选定范围为[0, config.max_position_embeddings - 1]

    什么是位置 ID?

  • head_mask(形状为(num_heads,)(num_layers, num_heads)Numpy数组或tf.Tensor可选) — 用于使自注意力模块中的选定头部失效的掩码。掩码值选定在[0, 1]范围内:

    • 1 表示头部未屏蔽

    • 0 表示头部被屏蔽

  • inputs_embeds(形状为(batch_size, sequence_length, hidden_size)tf.Tensor可选) — 可选地,您可以选择直接传递嵌入表示而不是传递input_ids。如果您想要更多控制如何将input_ids索引转换为相关向量,这将非常有用,而不是使用模型的内部嵌入查找矩阵。

  • output_attentionsbool可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的attentions。此参数仅可在急切模式下使用,在图模式下将使用配置中的值。

  • output_hidden_statesbool可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的hidden_states。此参数仅可在急切模式下使用,在图模式下将使用配置中的值。

  • return_dictbool可选) — 是否返回 ModelOutput 而不是普通元组。此参数可在急切模式下使用,在图模式下该值将始终设置为 True。

  • trainingbool可选,默认为False) — 是否在训练模式下使用模型(一些模块如丢弃模块在训练和评估之间有不同的行为)。

  • encoder_hidden_states(形状为(batch_size, sequence_length, hidden_size)tf.Tensor可选) — 编码器最后一层的隐藏状态序列。如果模型配置为解码器,则在交叉注意力中使用。

  • encoder_attention_mask(形状为(batch_size, sequence_length)tf.Tensor可选) — 用于避免在编码器输入的填充标记索引上执行注意力。如果模型配置为解码器,则在交叉注意力中使用此掩码。掩码值选定在[0, 1]范围内:

    • 对于未屏蔽的标记,

    • 0 表示屏蔽的标记。

  • past_key_values(长度为config.n_layersTuple[Tuple[tf.Tensor]]) — 包含注意力块的预计算键和值隐藏状态。可用于加速解码。如果使用past_key_values,用户可以选择仅输入最后的decoder_input_ids(这些不会将其过去的键值状态提供给此模型)的形状为(batch_size, 1)而不是所有decoder_input_ids的形状为(batch_size, sequence_length)

  • use_cachebool可选,默认为True) — 如果设置为True,则返回past_key_values键值状态,可用于加速解码(参见past_key_values)。在训练期间设置为False,在生成期间设置为True

返回

transformers.modeling_tf_outputs.TFBaseModelOutputWithPoolingAndCrossAttentions 或tuple(tf.Tensor)

一个 transformers.modeling_tf_outputs.TFBaseModelOutputWithPoolingAndCrossAttentions 或一个tf.Tensor元组(如果传递return_dict=Falseconfig.return_dict=False)包含各种元素,取决于配置(RobertaPreLayerNormConfig)和输入。

  • last_hidden_state (tf.Tensor,形状为(batch_size, sequence_length, hidden_size)) — 模型最后一层的隐藏状态序列。

  • pooler_output (tf.Tensor,形状为(batch_size, hidden_size)) — 序列中第一个标记(分类标记)的最后一层隐藏状态,经过线性层和 Tanh 激活函数进一步处理。线性层的权重是在预训练期间从下一个句子预测(分类)目标中训练的。

    这个输出通常是输入语义内容的好摘要,通常最好对整个输入序列的隐藏状态序列进行平均或池化。

  • past_key_values (List[tf.Tensor], optional, 当传递use_cache=Trueconfig.use_cache=True时返回) — 长度为config.n_layerstf.Tensor列表,每个张量的形状为(2, batch_size, num_heads, sequence_length, embed_size_per_head)

    包含预先计算的隐藏状态(注意力块中的键和值),可用于加速顺序解码(请参见past_key_values输入)。

  • hidden_states (tuple(tf.Tensor), optional, 当传递output_hidden_states=Trueconfig.output_hidden_states=True时返回) — 形状为(batch_size, sequence_length, hidden_size)tf.Tensor元组(一个用于嵌入的输出 + 一个用于每个层的输出)。

    模型在每一层输出的隐藏状态以及初始嵌入输出。

  • attentions (tuple(tf.Tensor), optional, 当传递output_attentions=Trueconfig.output_attentions=True时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)tf.Tensor元组(每个层一个)。

    注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。

  • cross_attentions (tuple(tf.Tensor), optional, 当传递output_attentions=Trueconfig.output_attentions=True时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)tf.Tensor元组(每个层一个)。

    解码器的交叉注意力层的注意力权重,在注意力 softmax 之后,用于计算交叉注意力头中的加权平均值。

TFRobertaPreLayerNormModel 的前向方法,覆盖了__call__特殊方法。

虽然前向传递的方法需要在此函数内定义,但应该在此之后调用Module实例,而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例:

>>> from transformers import AutoTokenizer, TFRobertaPreLayerNormModel
>>> import tensorflow as tf

>>> tokenizer = AutoTokenizer.from_pretrained("andreasmadsen/efficient_mlm_m0.40")
>>> model = TFRobertaPreLayerNormModel.from_pretrained("andreasmadsen/efficient_mlm_m0.40")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf")
>>> outputs = model(inputs)

>>> last_hidden_states = outputs.last_hidden_state

TFRobertaPreLayerNormForCausalLM

class transformers.TFRobertaPreLayerNormForCausalLM

<来源>

( config: RobertaPreLayerNormConfig *inputs **kwargs )

call

<来源>

( input_ids: TFModelInputType | None = None attention_mask: np.ndarray | tf.Tensor | None = None token_type_ids: np.ndarray | tf.Tensor | None = None position_ids: np.ndarray | tf.Tensor | None = None head_mask: np.ndarray | tf.Tensor | None = None inputs_embeds: np.ndarray | tf.Tensor | None = None encoder_hidden_states: np.ndarray | tf.Tensor | None = None encoder_attention_mask: np.ndarray | tf.Tensor | None = None past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None use_cache: Optional[bool] = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None labels: np.ndarray | tf.Tensor | None = None training: Optional[bool] = False ) → export const metadata = 'undefined';transformers.modeling_tf_outputs.TFCausalLMOutputWithCrossAttentions or tuple(tf.Tensor)

参数

  • input_ids (Numpy 数组tf.Tensor,形状为(batch_size, sequence_length)) — 词汇表中输入序列 token 的索引。

    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.call()和 PreTrainedTokenizer.encode()。

    什么是输入 ID?

  • attention_mask (Numpy 数组tf.Tensor,形状为(batch_size, sequence_length)可选) — 遮蔽填充 token 索引上的注意力。选择在[0, 1]中的遮蔽值:

    • 1 表示未被遮蔽的 token,

    • 0 表示被遮蔽的 token。

    什么是注意力遮罩?

  • token_type_ids (Numpy 数组tf.Tensor,形状为(batch_size, sequence_length)可选) — 段标记索引,指示输入的第一部分和第二部分。索引在[0, 1]中选择:

    • 0 对应于句子 A的 token,

    • 1 对应于句子 B的 token。

    什么是 token type IDs?

  • position_ids (Numpy 数组tf.Tensor,形状为(batch_size, sequence_length)可选) — 每个输入序列 token 在位置嵌入中的位置索引。在范围[0, config.max_position_embeddings - 1]中选择。

    什么是位置 ID?

  • head_mask (Numpy 数组tf.Tensor,形状为(num_heads,)(num_layers, num_heads)可选) — 用于使自注意力模块中的特定头部失效的遮蔽。选择在[0, 1]中的遮蔽值:

    • 1 表示头部未被遮蔽,

    • 0 表示头部被遮蔽。

  • inputs_embeds (tf.Tensor,形状为(batch_size, sequence_length, hidden_size)可选) — 可选地,可以直接传递嵌入表示而不是传递input_ids。如果您想要更多控制如何将input_ids索引转换为相关向量,而不是使用模型的内部嵌入查找矩阵,则这很有用。

  • output_attentions (bool可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量中的attentions。此参数仅在急切模式下使用,在图模式中将使用配置中的值。

  • output_hidden_states (bool可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量中的hidden_states。此参数仅在急切模式下使用,在图模式中将使用配置中的值。

  • return_dict (bool可选) — 是否返回 ModelOutput 而不是普通元组。此参数可以在急切模式下使用,在图模式中该值将始终设置为 True。

  • training (bool, 可选, 默认为 False) — 是否在训练模式下使用模型(一些模块如 dropout 模块在训练和评估之间有不同的行为)。

  • encoder_hidden_states (tf.Tensor,形状为(batch_size, sequence_length, hidden_size)可选) — 编码器最后一层输出的隐藏状态序列。如果模型配置为解码器,则在交叉注意力中使用。

  • encoder_attention_mask (tf.Tensor,形状为(batch_size, sequence_length)可选) — 遮蔽编码器输入的填充 token 索引上的注意力。如果模型配置为解码器,则在交叉注意力中使用此遮罩。选择在[0, 1]中的遮蔽值:

    • 1 表示未被遮蔽的 token,

    • 0 表示被遮蔽的 token。

  • past_key_values(长度为 config.n_layersTuple[Tuple[tf.Tensor]])— 包含注意力块的预先计算的键和值隐藏状态。可用于加速解码。如果使用了 past_key_values,用户可以选择只输入最后的 decoder_input_ids(那些没有将它们的过去键值状态提供给此模型的)的形状为 (batch_size, 1),而不是形状为 (batch_size, sequence_length) 的所有 decoder_input_ids

  • use_cachebool可选,默认为 True)— 如果设置为 True,则返回 past_key_values 键值状态,并可用于加速解码(参见 past_key_values)。在训练期间设置为 False,在生成期间设置为 True

  • labels(形状为 (batch_size, sequence_length)tf.Tensornp.ndarray可选)— 用于计算交叉熵分类损失的标签。索引应在 [0, ..., config.vocab_size - 1] 中。

返回

transformers.modeling_tf_outputs.TFCausalLMOutputWithCrossAttentions 或者 tuple(tf.Tensor)

一个 transformers.modeling_tf_outputs.TFCausalLMOutputWithCrossAttentions 或者一个 tf.Tensor 元组(如果传递了 return_dict=False 或者当 config.return_dict=False 时)包含根据配置(RobertaPreLayerNormConfig)和输入的各种元素。

  • loss(形状为 (n,)tf.Tensor可选,当提供 labels 时返回,其中 n 是非掩码标签的数量)— 语言建模损失(用于下一个标记预测)。

  • logits(形状为 (batch_size, sequence_length, config.vocab_size)tf.Tensor)— 语言建模头的预测分数(SoftMax 前每个词汇标记的分数)。

  • hidden_statestuple(tf.Tensor)可选,当传递 output_hidden_states=True 或者当 config.output_hidden_states=True 时返回)— 形状为 (batch_size, sequence_length, hidden_size) 的元组的 tf.Tensor(一个用于嵌入的输出 + 一个用于每一层的输出)。

    模型在每一层输出的隐藏状态加上初始嵌入输出。

  • attentionstuple(tf.Tensor)可选,当传递 output_attentions=True 或者当 config.output_attentions=True 时返回)— 形状为 (batch_size, num_heads, sequence_length, sequence_length) 的元组的 tf.Tensor(每层一个)。

    注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。

  • cross_attentionstuple(tf.Tensor)可选,当传递 output_attentions=True 或者当 config.output_attentions=True 时返回)— 形状为 (batch_size, num_heads, sequence_length, sequence_length) 的元组的 tf.Tensor(每层一个)。

    解码器的交叉注意力层的注意力权重,注意力 softmax 后用于计算交叉注意力头中的加权平均值。

  • past_key_valuesList[tf.Tensor]可选,当传递 use_cache=True 或者当 config.use_cache=True 时返回)— 长度为 config.n_layerstf.Tensor 列表,每个张量的形状为 (2, batch_size, num_heads, sequence_length, embed_size_per_head)

    包含预先计算的隐藏状态(注意力块中的键和值),可用于加速顺序解码。

TFRobertaPreLayerNormForCausalLM 的前向方法,覆盖 __call__ 特殊方法。

尽管前向传递的配方需要在此函数内定义,但应该在此之后调用Module实例,而不是这个,因为前者负责运行预处理和后处理步骤,而后者则默默地忽略它们。

示例:

>>> from transformers import AutoTokenizer, TFRobertaPreLayerNormForCausalLM
>>> import tensorflow as tf

>>> tokenizer = AutoTokenizer.from_pretrained("andreasmadsen/efficient_mlm_m0.40")
>>> model = TFRobertaPreLayerNormForCausalLM.from_pretrained("andreasmadsen/efficient_mlm_m0.40")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf")
>>> outputs = model(inputs)
>>> logits = outputs.logits

TFRobertaPreLayerNormForMaskedLM

class transformers.TFRobertaPreLayerNormForMaskedLM

<来源>

( config *inputs **kwargs )

参数

  • config(RobertaPreLayerNormConfig)— 模型配置类,包含模型的所有参数。使用配置文件初始化不会加载与模型相关的权重,只会加载配置。查看 from_pretrained()方法以加载模型权重。

RoBERTa-PreLayerNorm 模型,顶部带有语言建模头。

此模型继承自 TFPreTrainedModel。查看超类文档,了解库为其所有模型实现的通用方法(例如下载或保存、调整输入嵌入、修剪头等)。

此模型还是一个tf.keras.Model子类。将其用作常规的 TF 2.0 Keras 模型,并参考 TF 2.0 文档以获取有关一般用法和行为的所有信息。

transformers中的 TensorFlow 模型和层接受两种格式的输入:

  • 将所有输入作为关键字参数(类似于 PyTorch 模型),或

  • 将所有输入作为列表、元组或字典放在第一个位置参数中。

支持第二种格式的原因是,Keras 方法在将输入传递给模型和层时更喜欢这种格式。由于这种支持,在使用model.fit()等方法时,应该可以“正常工作” - 只需传递model.fit()支持的任何格式的输入和标签!但是,如果您想在 Keras 方法之外使用第二种格式,例如在使用 KerasFunctionalAPI 创建自己的层或模型时,有三种可能性可用于在第一个位置参数中收集所有输入张量:

  • 只有一个包含input_ids的张量,没有其他内容:model(input_ids)

  • 一个长度不同的列表,其中包含一个或多个按照文档字符串中给定的顺序的输入张量:model([input_ids, attention_mask])model([input_ids, attention_mask, token_type_ids])

  • 一个字典,其中包含一个或多个与文档字符串中给定的输入名称相关联的输入张量:model({"input_ids": input_ids, "token_type_ids": token_type_ids})

请注意,当使用子类化创建模型和层时,您无需担心任何这些,因为您可以像对待其他 Python 函数一样传递输入!

call

<来源>

( input_ids: TFModelInputType | None = None attention_mask: np.ndarray | tf.Tensor | None = None token_type_ids: np.ndarray | tf.Tensor | None = None position_ids: np.ndarray | tf.Tensor | None = None head_mask: np.ndarray | tf.Tensor | None = None inputs_embeds: np.ndarray | tf.Tensor | None = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None labels: np.ndarray | tf.Tensor | None = None training: Optional[bool] = False ) → export const metadata = 'undefined';transformers.modeling_tf_outputs.TFMaskedLMOutput or tuple(tf.Tensor)

参数

  • input_ids(形状为(batch_size, sequence_length)Numpy数组或tf.Tensor)— 词汇表中输入序列标记的索引。

    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.call()和 PreTrainedTokenizer.encode()。

    什么是输入 ID?

  • attention_mask(形状为(batch_size, sequence_length)Numpy数组或tf.Tensor可选)— 避免对填充标记索引执行注意力的掩码。掩码值选择在[0, 1]中:

    • 1 表示未被掩盖的标记,

    • 0 表示被掩盖的标记。

    什么是注意力掩码?

  • token_type_ids(形状为(batch_size, sequence_length)Numpy数组或tf.Tensor可选)— 段标记索引,指示输入的第一部分和第二部分。索引选择在[0, 1]中:

    • 0 对应于句子 A的标记,

    • 1 对应于句子 B的标记。

    什么是标记类型 ID?

  • position_ids(形状为(batch_size, sequence_length)Numpy数组或tf.Tensor可选)— 每个输入序列标记在位置嵌入中的位置索引。在范围[0, config.max_position_embeddings - 1]中选择。

    什么是位置 ID?

  • head_mask(形状为(num_heads,)(num_layers, num_heads)Numpy数组或tf.Tensor可选)— 用于使自注意力模块的选定头部失效的掩码。掩码值选择在[0, 1]中:

    • 1 表示头部未被掩盖

    • 0 表示头部被掩盖

  • inputs_embeds(形状为(batch_size, sequence_length, hidden_size)tf.Tensor可选)— 可选地,可以选择直接传递嵌入表示,而不是传递input_ids。如果您想要更多控制如何将input_ids索引转换为相关向量,而不是模型的内部嵌入查找矩阵,则这很有用。

  • output_attentions可选bool)— 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量下的attentions。此参数仅在急切模式下使用,在图模式中将使用配置中的值。

  • output_hidden_states可选bool)— 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states。此参数仅在急切模式下使用,在图模式中将使用配置中的值。

  • return_dict可选bool)— 是否返回 ModelOutput 而不是普通元组。此参数在急切模式下使用,在图模式中该值将始终设置为 True。

  • trainingbool可选,默认为False)— 是否在训练模式下使用模型(一些模块如 dropout 模块在训练和评估之间有不同的行为)。

  • labels(形状为(batch_size, sequence_length)tf.Tensor可选)— 用于计算掩盖语言建模损失的标签。索引应在[-100, 0, ..., config.vocab_size]中(参见input_ids文档字符串)索引设置为-100的标记将被忽略(掩盖),仅对具有标签在[0, ..., config.vocab_size]中的标记计算损失

返回

transformers.modeling_tf_outputs.TFMaskedLMOutput 或tuple(tf.Tensor)

一个 transformers.modeling_tf_outputs.TFMaskedLMOutput 或一个tf.Tensor的元组(如果传递了return_dict=False或当config.return_dict=False时)包括根据配置(RobertaPreLayerNormConfig)和输入的不同元素。

  • loss(形状为(n,)tf.Tensor可选,当提供labels时返回,其中 n 是非掩盖标签的数量)— 掩盖语言建模(MLM)损失。

  • logits(形状为(batch_size, sequence_length, config.vocab_size)tf.Tensor)— 语言建模头部的预测分数(SoftMax 之前每个词汇标记的分数)。

  • hidden_states (tuple(tf.Tensor), 可选, 当传递output_hidden_states=True或当config.output_hidden_states=True时返回) — 形状为(batch_size, sequence_length, hidden_size)tf.Tensor元组(一个用于嵌入的输出 + 一个用于每个层的输出)。

    模型在每一层的输出的隐藏状态加上初始嵌入输出。

  • attentions (tuple(tf.Tensor), 可选, 当传递output_attentions=True或当config.output_attentions=True时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)tf.Tensor元组(每层一个)。

    注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。

TFRobertaPreLayerNormForMaskedLM 的前向方法覆盖了__call__特殊方法。

尽管前向传递的方法需要在此函数内定义,但应该在此之后调用Module实例,而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例:

>>> from transformers import AutoTokenizer, TFRobertaPreLayerNormForMaskedLM
>>> import tensorflow as tf

>>> tokenizer = AutoTokenizer.from_pretrained("andreasmadsen/efficient_mlm_m0.40")
>>> model = TFRobertaPreLayerNormForMaskedLM.from_pretrained("andreasmadsen/efficient_mlm_m0.40")

>>> inputs = tokenizer("The capital of France is <mask>.", return_tensors="tf")
>>> logits = model(**inputs).logits

>>> # retrieve index of <mask>
>>> mask_token_index = tf.where((inputs.input_ids == tokenizer.mask_token_id)[0])
>>> selected_logits = tf.gather_nd(logits[0], indices=mask_token_index)

>>> predicted_token_id = tf.math.argmax(selected_logits, axis=-1)
>>> tokenizer.decode(predicted_token_id)
' Paris'
>>> labels = tokenizer("The capital of France is Paris.", return_tensors="tf")["input_ids"]
>>> # mask labels of non-<mask> tokens
>>> labels = tf.where(inputs.input_ids == tokenizer.mask_token_id, labels, -100)

>>> outputs = model(**inputs, labels=labels)
>>> round(float(outputs.loss), 2)
0.69

TFRobertaPreLayerNormForSequenceClassification

class transformers.TFRobertaPreLayerNormForSequenceClassification

<来源>

( config *inputs **kwargs )

参数

  • config(RobertaPreLayerNormConfig) — 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只会加载配置。查看 from_pretrained()方法以加载模型权重。

RoBERTa-PreLayerNorm 模型变压器,顶部带有序列分类/回归头(池化输出的线性层),例如 GLUE 任务。

这个模型继承自 TFPreTrainedModel。查看超类文档以了解库实现的通用方法(例如下载或保存,调整输入嵌入大小,修剪头等)。

这个模型也是一个tf.keras.Model子类。将其用作常规的 TF 2.0 Keras 模型,并参考 TF 2.0 文档以获取与一般用法和行为相关的所有事项。

transformers中的 TensorFlow 模型和层接受两种格式的输入:

  • 将所有输入作为关键字参数(类似于 PyTorch 模型),或

  • 将所有输入作为列表、元组或字典放在第一个位置参数中。

支持第二种格式的原因是 Keras 方法在向模型和层传递输入时更喜欢这种格式。由于这种支持,当使用model.fit()等方法时,应该“只需工作” - 只需以model.fit()支持的任何格式传递输入和标签即可!然而,如果您想在 Keras 方法之外使用第二种格式,例如在使用 KerasFunctionalAPI 创建自己的层或模型时,有三种可能性可以用来收集第一个位置参数中的所有输入张量:

  • 一个仅包含input_ids且没有其他内容的单个张量:model(input_ids)

  • 一个长度可变的列表,其中包含一个或多个按照文档字符串中给定的顺序的输入张量:model([input_ids, attention_mask])model([input_ids, attention_mask, token_type_ids])

  • 一个字典,其中包含一个或多个与文档字符串中给定的输入名称相关联的输入张量:model({"input_ids": input_ids, "token_type_ids": token_type_ids})

请注意,当使用子类化创建模型和层时,您不需要担心这些问题,因为您可以像对待其他 Python 函数一样传递输入!

call

<来源>

( input_ids: TFModelInputType | None = None attention_mask: np.ndarray | tf.Tensor | None = None token_type_ids: np.ndarray | tf.Tensor | None = None position_ids: np.ndarray | tf.Tensor | None = None head_mask: np.ndarray | tf.Tensor | None = None inputs_embeds: np.ndarray | tf.Tensor | None = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None labels: np.ndarray | tf.Tensor | None = None training: Optional[bool] = False ) → export const metadata = 'undefined';transformers.modeling_tf_outputs.TFSequenceClassifierOutput or tuple(tf.Tensor)

参数

  • input_ids(形状为(batch_size, sequence_length)Numpy数组或tf.Tensor)— 词汇表中输入序列令牌的索引。

    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.call()和 PreTrainedTokenizer.encode()。

    什么是输入 ID?

  • attention_mask(形状为(batch_size, sequence_length)Numpy数组或tf.Tensor可选)— 用于避免在填充令牌索引上执行注意力的掩码。掩码值在[0, 1]中选择:

    • 1 表示未被“掩盖”的令牌,

    • 0 表示被“掩盖”的令牌。

    什么是注意力掩码?

  • token_type_ids(形状为(batch_size, sequence_length)Numpy数组或tf.Tensor可选)— 段令牌索引,指示输入的第一部分和第二部分。索引在[0, 1]中选择:

    • 0 对应于句子 A令牌,

    • 1 对应于句子 B令牌。

    什么是令牌类型 ID?

  • position_ids(形状为(batch_size, sequence_length)Numpy数组或tf.Tensor可选)— 每个输入序列令牌在位置嵌入中的位置索引。在范围[0, config.max_position_embeddings - 1]中选择。

    什么是位置 ID?

  • head_mask(形状为(num_heads,)(num_layers, num_heads)Numpy数组或tf.Tensor可选)— 用于使自注意力模块的选定头部无效的掩码。掩码值在[0, 1]中选择:

    • 1 表示头部“未被掩盖”,

    • 0 表示头部“已被掩盖”。

  • inputs_embeds(形状为(batch_size, sequence_length, hidden_size)tf.Tensor可选)— 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids。如果您想要更多控制如何将input_ids索引转换为相关向量,这将非常有用,而不是使用模型的内部嵌入查找矩阵。

  • output_attentionsbool可选)— 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量中的attentions。此参数仅在急切模式下使用,在图模式下将使用配置中的值。

  • output_hidden_statesbool可选)— 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量中的hidden_states。此参数仅在急切模式下使用,在图模式下将使用配置中的值。

  • return_dictbool可选)— 是否返回 ModelOutput 而不是普通元组。此参数可以在急切模式下使用,在图模式下该值将始终设置为 True。

  • trainingbool可选,默认为False)— 是否在训练模式下使用模型(一些模块,如 dropout 模块,在训练和评估之间具有不同的行为)。

  • labels(形状为(batch_size,)tf.Tensor可选)— 用于计算序列分类/回归损失的标签。索引应在[0, ..., config.num_labels - 1]中。如果config.num_labels == 1,则计算回归损失(均方损失),如果config.num_labels > 1,则计算分类损失(交叉熵)。

返回

transformers.modeling_tf_outputs.TFSequenceClassifierOutput 或tuple(tf.Tensor)

一个 transformers.modeling_tf_outputs.TFSequenceClassifierOutput 或一个tf.Tensor元组(如果传递return_dict=Falseconfig.return_dict=False)包含根据配置(RobertaPreLayerNormConfig)和输入的不同元素。

  • loss(形状为(batch_size, )tf.Tensor可选,当提供labels时返回)— 分类(如果 config.num_labels==1 则为回归)损失。

  • logits(形状为(batch_size, config.num_labels)tf.Tensor)— 分类(如果 config.num_labels==1 则为回归)分数(SoftMax 之前)。

  • hidden_statestuple(tf.Tensor)可选,当传递output_hidden_states=Trueconfig.output_hidden_states=True时返回)— 形状为(batch_size, sequence_length, hidden_size)tf.Tensor元组(一个用于嵌入的输出 + 一个用于每一层的输出)。

    模型在每一层的输出的隐藏状态加上初始嵌入输出。

  • attentionstuple(tf.Tensor)可选,当传递output_attentions=Trueconfig.output_attentions=True时返回)— 形状为(batch_size, num_heads, sequence_length, sequence_length)tf.Tensor元组(每层一个)。

    在注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。

TFRobertaPreLayerNormForSequenceClassification 的前向方法,覆盖了__call__特殊方法。

尽管前向传递的配方需要在此函数内定义,但应该在此之后调用Module实例,而不是这个,因为前者负责运行预处理和后处理步骤,而后者则默默地忽略它们。

示例:

>>> from transformers import AutoTokenizer, TFRobertaPreLayerNormForSequenceClassification
>>> import tensorflow as tf

>>> tokenizer = AutoTokenizer.from_pretrained("andreasmadsen/efficient_mlm_m0.40")
>>> model = TFRobertaPreLayerNormForSequenceClassification.from_pretrained("andreasmadsen/efficient_mlm_m0.40")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf")

>>> logits = model(**inputs).logits

>>> predicted_class_id = int(tf.math.argmax(logits, axis=-1)[0])
>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = TFRobertaPreLayerNormForSequenceClassification.from_pretrained("andreasmadsen/efficient_mlm_m0.40", num_labels=num_labels)

>>> labels = tf.constant(1)
>>> loss = model(**inputs, labels=labels).loss

TFRobertaPreLayerNormForMultipleChoice

class transformers.TFRobertaPreLayerNormForMultipleChoice

<来源>

( config *inputs **kwargs )

参数

  • config(RobertaPreLayerNormConfig)— 包含模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只加载配置。查看 from_pretrained()方法以加载模型权重。

在顶部具有多项选择分类头的 RobertaPreLayerNorm 模型(在汇总输出的顶部有一个线性层和一个 softmax),例如用于 RocStories/SWAG 任务。

此模型继承自 TFPreTrainedModel。查看超类文档以了解库为所有模型实现的通用方法(如下载或保存、调整输入嵌入、修剪头等)。

此模型还是tf.keras.Model子类。将其用作常规的 TF 2.0 Keras 模型,并参考 TF 2.0 文档以了解与一般用法和行为相关的所有内容。

transformers中的 TensorFlow 模型和层接受两种格式的输入:

  • 将所有输入作为关键字参数(类似于 PyTorch 模型),或

  • 将所有输入作为列表、元组或字典的第一个位置参数。

支持第二种格式的原因是,当将输入传递给模型和层时,Keras 方法更喜欢这种格式。由于有了这种支持,当使用model.fit()等方法时,您应该可以“轻松使用” - 只需以model.fit()支持的任何格式传递输入和标签即可!但是,如果您想在 Keras 方法之外使用第二种格式,比如在使用 KerasFunctional API 创建自己的层或模型时,有三种可能性可以用来收集第一个位置参数中的所有输入张量:

  • 一个仅包含input_ids的单个张量,没有其他内容:model(input_ids)

  • 一个长度可变的列表,其中包含一个或多个输入张量,按照文档字符串中给定的顺序:model([input_ids, attention_mask])model([input_ids, attention_mask, token_type_ids])

  • 一个字典,其中包含与文档字符串中给定的输入名称相关联的一个或多个输入张量:model({"input_ids": input_ids, "token_type_ids": token_type_ids})

请注意,当使用子类化创建模型和层时,您无需担心这些问题,因为您可以像将输入传递给任何其他 Python 函数一样传递输入!

call

<来源>

( input_ids: TFModelInputType | None = None attention_mask: np.ndarray | tf.Tensor | None = None token_type_ids: np.ndarray | tf.Tensor | None = None position_ids: np.ndarray | tf.Tensor | None = None head_mask: np.ndarray | tf.Tensor | None = None inputs_embeds: np.ndarray | tf.Tensor | None = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None labels: np.ndarray | tf.Tensor | None = None training: Optional[bool] = False ) → export const metadata = 'undefined';transformers.modeling_tf_outputs.TFMultipleChoiceModelOutput or tuple(tf.Tensor)

参数

  • input_ids(形状为(batch_size, num_choices, sequence_length)Numpy arraytf.Tensor)- 词汇表中输入序列标记的索引。

    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.call()和 PreTrainedTokenizer.encode()。

    什么是 input IDs?

  • attention_mask(形状为(batch_size, num_choices, sequence_length)Numpy arraytf.Tensor可选)- 用于避免在填充标记索引上执行注意力的掩码。选择的掩码值在[0, 1]范围内:

    • 1 对于未被masked的标记,

    • 0 对于被masked的标记。

    什么是 attention masks?

  • token_type_ids(形状为(batch_size, num_choices, sequence_length)Numpy arraytf.Tensor可选)- 段标记索引,指示输入的第一部分和第二部分。索引在[0, 1]中选择:

    • 0 对应于句子 A标记,

    • 1 对应于句子 B标记。

    什么是 token type IDs?

  • position_ids(形状为(batch_size, num_choices, sequence_length)Numpy arraytf.Tensor可选)- 每个输入序列标记在位置嵌入中的位置索引。在范围[0, config.max_position_embeddings - 1]中选择。

    什么是 position IDs?

  • head_mask(形状为(num_heads,)(num_layers, num_heads)Numpy arraytf.Tensor可选)- 用于使自注意力模块的选定头部失效的掩码。选择的掩码值在[0, 1]范围内:

    • 1 表示头部未被masked

    • 0 表示头部被masked

  • inputs_embeds(形状为(batch_size, num_choices, sequence_length, hidden_size)tf.Tensor可选)- 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids。如果您想要更多控制权来将input_ids索引转换为相关向量,而不是使用模型的内部嵌入查找矩阵,这将非常有用。

  • output_attentionsbool可选)- 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回的张量下的attentions。此参数仅可在急切模式下使用,在图模式下将使用配置中的值。

  • output_hidden_states (bool可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的 hidden_states。此参数仅在急切模式下使用,在图模式下将使用配置中的值。

  • return_dictbool可选) — 是否返回一个 ModelOutput 而不是一个普通元组。此参数可以在急切模式下使用,在图模式下该值将始终设置为 True。

  • trainingbool可选,默认为 False) — 是否在训练模式下使用模型(一些模块如 dropout 模块在训练和评估之间有不同的行为)。

  • labels (tf.Tensor,形状为 (batch_size,)可选) — 用于计算多选分类损失的标签。索引应在 [0, ..., num_choices] 范围内,其中 num_choices 是输入张量第二维的大小。(参见上面的 input_ids

返回

transformers.modeling_tf_outputs.TFMultipleChoiceModelOutput 或 tuple(tf.Tensor)

一个 transformers.modeling_tf_outputs.TFMultipleChoiceModelOutput 或一个 tf.Tensor 元组(如果传递了 return_dict=False 或当 config.return_dict=False 时)包含根据配置(RobertaPreLayerNormConfig)和输入的各种元素。

  • loss(形状为 (batch_size, )tf.Tensor可选,当提供 labels 时返回) — 分类损失。

  • logits(形状为 (batch_size, num_choices)tf.Tensor) — num_choices 是输入张量的第二维。(参见上面的 input_ids)。

    分类分数(SoftMax 之前)。

  • hidden_statestuple(tf.Tensor)可选,当传递 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — 形状为 (batch_size, sequence_length, hidden_size)tf.Tensor 元组(一个用于嵌入的输出 + 一个用于每个层的输出)。

    模型在每个层的输出状态加上初始嵌入输出的隐藏状态。

  • attentionstuple(tf.Tensor)可选,当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — 形状为 (batch_size, num_heads, sequence_length, sequence_length)tf.Tensor 元组(每层一个)。

    在注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。

TFRobertaPreLayerNormForMultipleChoice 前向方法,覆盖了 __call__ 特殊方法。

虽然前向传递的步骤需要在此函数内定义,但应该在此之后调用 Module 实例,而不是在此处调用,因为前者会处理运行前后处理步骤,而后者会默默地忽略它们。

示例:

>>> from transformers import AutoTokenizer, TFRobertaPreLayerNormForMultipleChoice
>>> import tensorflow as tf

>>> tokenizer = AutoTokenizer.from_pretrained("andreasmadsen/efficient_mlm_m0.40")
>>> model = TFRobertaPreLayerNormForMultipleChoice.from_pretrained("andreasmadsen/efficient_mlm_m0.40")

>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
>>> choice0 = "It is eaten with a fork and a knife."
>>> choice1 = "It is eaten while held in the hand."

>>> encoding = tokenizer([prompt, prompt], [choice0, choice1], return_tensors="tf", padding=True)
>>> inputs = {k: tf.expand_dims(v, 0) for k, v in encoding.items()}
>>> outputs = model(inputs)  # batch size is 1

>>> # the linear classifier still needs to be trained
>>> logits = outputs.logits

TFRobertaPreLayerNormForTokenClassification

class transformers.TFRobertaPreLayerNormForTokenClassification

<来源>

( config *inputs **kwargs )

参数

  • config(RobertaPreLayerNormConfig) — 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型相关的权重,只会加载配置。查看 from_pretrained() 方法以加载模型权重。

RoBERTa-PreLayerNorm 模型,顶部带有一个标记分类头(隐藏状态输出顶部的线性层),例如用于命名实体识别(NER)任务。

此模型继承自 TFPreTrainedModel。检查超类文档,了解库为所有模型实现的通用方法(如下载或保存、调整输入嵌入、修剪头等)。

此模型还是一个tf.keras.Model子类。将其用作常规的 TF 2.0 Keras 模型,并参考 TF 2.0 文档以获取与一般用法和行为相关的所有信息。

transformers中的 TensorFlow 模型和层接受两种格式的输入:

  • 将所有输入作为关键字参数(类似于 PyTorch 模型),或

  • 将所有输入作为列表、元组或字典的第一个位置参数。

支持第二种格式的原因是 Keras 方法在将输入传递给模型和层时更喜欢这种格式。由于这种支持,当使用model.fit()等方法时,应该可以“正常工作” - 只需以model.fit()支持的任何格式传递输入和标签!但是,如果您想在 Keras 方法之外使用第二种格式,比如在使用 KerasFunctional API 创建自己的层或模型时,有三种可能性可以用来收集所有输入张量在第一个位置参数中:

  • 只有input_ids的单个张量,没有其他内容:model(input_ids)

  • 一个长度可变的列表,其中包含一个或多个输入张量,按照文档字符串中给定的顺序:model([input_ids, attention_mask])model([input_ids, attention_mask, token_type_ids])

  • 一个与文档字符串中给定的输入名称相关联的包含一个或多个输入张量的字典:model({"input_ids": input_ids, "token_type_ids": token_type_ids})

请注意,当使用子类化创建模型和层时,您不需要担心这些问题,因为您可以像对待其他 Python 函数一样传递输入!

call

<来源>

( input_ids: TFModelInputType | None = None attention_mask: np.ndarray | tf.Tensor | None = None token_type_ids: np.ndarray | tf.Tensor | None = None position_ids: np.ndarray | tf.Tensor | None = None head_mask: np.ndarray | tf.Tensor | None = None inputs_embeds: np.ndarray | tf.Tensor | None = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None labels: np.ndarray | tf.Tensor | None = None training: Optional[bool] = False ) → export const metadata = 'undefined';transformers.modeling_tf_outputs.TFTokenClassifierOutput or tuple(tf.Tensor)

参数

  • input_ids(形状为(batch_size, sequence_length)Numpy数组或tf.Tensor) — 词汇表中输入序列标记的索引。

    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.call()和 PreTrainedTokenizer.encode()。

    什么是输入 ID?

  • attention_mask(形状为(batch_size, sequence_length)Numpy数组或tf.Tensor可选) — 用于避免在填充标记索引上执行注意力的掩码。掩码值在[0, 1]中选择:

    • 1 表示未被掩码的标记,

    • 0 表示被掩码的标记。

    什么是注意力掩码?

  • token_type_ids(形状为(batch_size, sequence_length)Numpy数组或tf.Tensor可选) — 分段标记索引,指示输入的第一部分和第二部分。索引在[0, 1]中选择:

    • 0 对应于句子 A标记,

    • 1 对应于句子 B标记。

    什么是标记类型 ID?

  • position_ids(形状为(batch_size, sequence_length)Numpy数组或tf.Tensor可选) — 每个输入序列标记在位置嵌入中的位置索引。在范围[0, config.max_position_embeddings - 1]中选择。

    什么是位置 ID?

  • head_mask (Numpy 数组tf.Tensor 的形状为 (num_heads,)(num_layers, num_heads)可选) — 用于使自注意力模块的选定头部失效的掩码。掩码值选定在 [0, 1] 范围内:

    • 1 表示头部未被 屏蔽

    • 0 表示头部被 屏蔽

  • inputs_embeds (tf.Tensor 的形状为 (batch_size, sequence_length, hidden_size)可选) — 可选地,可以直接传递嵌入表示而不是传递 input_ids。如果您想要更多控制如何将 input_ids 索引转换为相关向量,而不是使用模型的内部嵌入查找矩阵,这将非常有用。

  • output_attentions (bool可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的 attentions。此参数仅在急切模式下使用,在图模式下将使用配置中的值。

  • output_hidden_states (bool可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的 hidden_states。此参数仅在急切模式下使用,在图模式下将使用配置中的值。

  • return_dict (bool可选) — 是否返回 ModelOutput 而不是普通元组。此参数可在急切模式下使用,在图模式下该值将始终设置为 True。

  • training (bool可选,默认为 False) — 是否在训练模式下使用模型(一些模块如 dropout 模块在训练和评估之间有不同的行为)。

  • labels (tf.Tensor 的形状为 (batch_size, sequence_length)可选) — 用于计算标记分类损失的标签。索引应在 [0, ..., config.num_labels - 1] 范围内。

返回

transformers.modeling_tf_outputs.TFTokenClassifierOutput 或 tuple(tf.Tensor)

transformers.modeling_tf_outputs.TFTokenClassifierOutput 或一个 tf.Tensor 元组(如果传递 return_dict=Falseconfig.return_dict=False)包含根据配置(RobertaPreLayerNormConfig)和输入的各种元素。

  • 损失 (tf.Tensor 的形状为 (n,)可选,当提供 labels 时返回,其中 n 是未屏蔽标签的数量) — 分类损失。

  • logits (tf.Tensor 的形状为 (batch_size, sequence_length, config.num_labels)) — 分类分数(SoftMax 之前)。

  • hidden_states (tuple(tf.Tensor)可选,当传递 output_hidden_states=Trueconfig.output_hidden_states=True 时返回) — 形状为 (batch_size, sequence_length, hidden_size)tf.Tensor 元组(一个用于嵌入输出,一个用于每一层的输出)。

    模型在每一层输出的隐藏状态加上初始嵌入输出。

  • attentions (tuple(tf.Tensor)可选,当传递 output_attentions=Trueconfig.output_attentions=True 时返回) — 形状为 (batch_size, num_heads, sequence_length, sequence_length)tf.Tensor 元组(每层一个)。

    注意力权重在注意力 softmax 之后,用于计算自注意力头中的加权平均值。

TFRobertaPreLayerNormForTokenClassification 的前向方法,覆盖 __call__ 特殊方法。

虽然前向传递的步骤需要在此函数内定义,但应该在此之后调用Module实例,而不是调用此函数,因为前者会负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例:

>>> from transformers import AutoTokenizer, TFRobertaPreLayerNormForTokenClassification
>>> import tensorflow as tf

>>> tokenizer = AutoTokenizer.from_pretrained("andreasmadsen/efficient_mlm_m0.40")
>>> model = TFRobertaPreLayerNormForTokenClassification.from_pretrained("andreasmadsen/efficient_mlm_m0.40")

>>> inputs = tokenizer(
...     "HuggingFace is a company based in Paris and New York", add_special_tokens=False, return_tensors="tf"
... )

>>> logits = model(**inputs).logits
>>> predicted_token_class_ids = tf.math.argmax(logits, axis=-1)

>>> # Note that tokens are classified rather then input words which means that
>>> # there might be more predicted token classes than words.
>>> # Multiple token classes might account for the same word
>>> predicted_tokens_classes = [model.config.id2label[t] for t in predicted_token_class_ids[0].numpy().tolist()]
>>> labels = predicted_token_class_ids
>>> loss = tf.math.reduce_mean(model(**inputs, labels=labels).loss)

TFRobertaPreLayerNormForQuestionAnswering

class transformers.TFRobertaPreLayerNormForQuestionAnswering

<来源>

( config *inputs **kwargs )

参数

  • config(RobertaPreLayerNormConfig](/docs/transformers/v4.37.2/en/main_classes/model#transformers.PreTrainedModel.from_pretrained)方法以加载模型权重。

RoBERTa-PreLayerNorm 模型,顶部带有用于提取式问答任务(如 SQuAD)的跨度分类头(在隐藏状态输出的线性层上计算span start logitsspan end logits)。

此模型继承自 TFPreTrainedModel。查看超类文档以获取库为其所有模型实现的通用方法(如下载或保存、调整输入嵌入、修剪头等)。

此模型还是一个tf.keras.Model子类。将其用作常规的 TF 2.0 Keras 模型,并参考 TF 2.0 文档以获取与一般用法和行为相关的所有信息。

transformers中的 TensorFlow 模型和层接受两种格式的输入:

  • 将所有输入作为关键字参数(类似于 PyTorch 模型),或

  • 将所有输入作为列表、元组或字典放在第一个位置参数中。

支持第二种格式的原因是,Keras 方法在将输入传递给模型和层时更喜欢这种格式。由于这种支持,当使用model.fit()等方法时,应该“只需工作”-只需以model.fit()支持的任何格式传递输入和标签!但是,如果您想在 Keras 方法之外使用第二种格式,例如在使用 KerasFunctionalAPI 创建自己的层或模型时,有三种可能性可用于在第一个位置参数中收集所有输入张量:

  • 只有一个input_ids张量,没有其他内容:model(input_ids)

  • 一个长度可变的列表,其中包含一个或多个按照文档字符串中给定的顺序的输入张量:model([input_ids, attention_mask])model([input_ids, attention_mask, token_type_ids])

  • 一个字典,其中包含一个或多个与文档字符串中给定的输入名称相关联的输入张量:model({"input_ids": input_ids, "token_type_ids": token_type_ids})

请注意,当使用子类化创建模型和层时,您无需担心任何内容,因为您可以像将输入传递给任何其他 Python 函数一样传递输入!

call

<来源>

( input_ids: TFModelInputType | None = None attention_mask: np.ndarray | tf.Tensor | None = None token_type_ids: np.ndarray | tf.Tensor | None = None position_ids: np.ndarray | tf.Tensor | None = None head_mask: np.ndarray | tf.Tensor | None = None inputs_embeds: np.ndarray | tf.Tensor | None = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None start_positions: np.ndarray | tf.Tensor | None = None end_positions: np.ndarray | tf.Tensor | None = None training: Optional[bool] = False ) → export const metadata = 'undefined';transformers.modeling_tf_outputs.TFQuestionAnsweringModelOutput or tuple(tf.Tensor)

参数

  • input_ids(形状为(batch_size, sequence_length)Numpy 数组tf.Tensor)-词汇表中输入序列标记的索引。

    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.call()和 PreTrainedTokenizer.encode()。

    输入 ID 是什么?

  • attention_mask(形状为(batch_size, sequence_length)Numpy 数组tf.Tensor可选)— 避免在填充令牌索引上执行注意力的蒙版。选择的蒙版值在[0, 1]中:

    • 1 表示未被掩盖的令牌,

    • 0 表示被掩盖的令牌。

    注意力蒙版是什么?

  • token_type_ids(形状为(batch_size, sequence_length)Numpy 数组tf.Tensor可选)— 段令牌索引,指示输入的第一部分和第二部分。索引在[0, 1]中选择:

    • 0 对应于句子 A的令牌,

    • 1 对应于句子 B的令牌。

    令牌类型 ID 是什么?

  • position_ids(形状为(batch_size, sequence_length)Numpy 数组tf.Tensor可选)— 每个输入序列令牌在位置嵌入中的位置索引。在范围[0, config.max_position_embeddings - 1]中选择。

    位置 ID 是什么?

  • head_mask(形状为(num_heads,)(num_layers, num_heads)Numpy 数组tf.Tensor可选)— 用于使自注意力模块的选定头部无效的蒙版。选择的蒙版值在[0, 1]中:

    • 1 表示头部未被掩盖

    • 0 表示头部被掩盖

  • inputs_embeds(形状为(batch_size, sequence_length, hidden_size)tf.Tensor可选)— 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids。如果您想要更多控制如何将input_ids索引转换为相关向量,而不是模型的内部嵌入查找矩阵,则这很有用。

  • output_attentionsbool可选)— 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的attentions。此参数仅在急切模式下使用,在图模式中将使用配置中的值。

  • output_hidden_statesbool可选)— 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的hidden_states。此参数仅在急切模式下使用,在图模式中将使用配置中的值。

  • return_dictbool可选)— 是否返回 ModelOutput 而不是普通元组。此参数可以在急切模式下使用,在图模式中该值将始终设置为 True。

  • trainingbool可选,默认为False)— 是否在训练模式下使用模型(一些模块,如丢弃模块,在训练和评估之间具有不同的行为)。

  • start_positions(形状为(batch_size,)tf.Tensor可选)— 用于计算标记范围开始的位置(索引)的标签。位置被夹紧到序列的长度(sequence_length)。序列外的位置不会用于计算损失。

  • end_positions(形状为(batch_size,)tf.Tensor可选)— 用于计算标记范围结束的位置(索引)的标签以计算令牌分类损失。位置被夹紧到序列的长度(sequence_length)。序列外的位置不会用于计算损失。

返回

transformers.modeling_tf_outputs.TFQuestionAnsweringModelOutput 或tuple(tf.Tensor)

一个 transformers.modeling_tf_outputs.TFQuestionAnsweringModelOutput 或一个tf.Tensor元组(如果传递return_dict=Falseconfig.return_dict=False)包含根据配置(RobertaPreLayerNormConfig)和输入的各种元素。

  • loss(形状为(batch_size, )tf.Tensor可选,当提供start_positionsend_positions时返回) — 总跨度提取损失是起始和结束位置的交叉熵之和。

  • start_logits(形状为(batch_size, sequence_length)tf.Tensor) — 跨度开始分数(SoftMax 之前)。

  • end_logits(形状为(batch_size, sequence_length)tf.Tensor) — 跨度结束分数(SoftMax 之前)。

  • hidden_statestuple(tf.Tensor)可选,当传递output_hidden_states=Trueconfig.output_hidden_states=True时返回) — 形状为(batch_size, sequence_length, hidden_size)tf.Tensor元组(嵌入输出和每个层的输出各一个)。

    模型在每个层的输出以及初始嵌入输出的隐藏状态。

  • attentionstuple(tf.Tensor)可选,当传递output_attentions=Trueconfig.output_attentions=True时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)tf.Tensor元组(每层一个)。

    在自注意力头中用于计算加权平均值的注意力 softmax 后的注意力权重。

TFRobertaPreLayerNormForQuestionAnswering 的前向方法覆盖了__call__特殊方法。

尽管前向传递的配方需要在此函数内定义,但应该在此之后调用Module实例,而不是调用此函数,因为前者会处理运行前后处理步骤,而后者会默默地忽略它们。

示例:

>>> from transformers import AutoTokenizer, TFRobertaPreLayerNormForQuestionAnswering
>>> import tensorflow as tf

>>> tokenizer = AutoTokenizer.from_pretrained("andreasmadsen/efficient_mlm_m0.40")
>>> model = TFRobertaPreLayerNormForQuestionAnswering.from_pretrained("andreasmadsen/efficient_mlm_m0.40")

>>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"

>>> inputs = tokenizer(question, text, return_tensors="tf")
>>> outputs = model(**inputs)

>>> answer_start_index = int(tf.math.argmax(outputs.start_logits, axis=-1)[0])
>>> answer_end_index = int(tf.math.argmax(outputs.end_logits, axis=-1)[0])

>>> predict_answer_tokens = inputs.input_ids[0, answer_start_index : answer_end_index + 1]
>>> # target is "nice puppet"
>>> target_start_index = tf.constant([14])
>>> target_end_index = tf.constant([15])

>>> outputs = model(**inputs, start_positions=target_start_index, end_positions=target_end_index)
>>> loss = tf.math.reduce_mean(outputs.loss)

JAXHide JAX 内容

FlaxRobertaPreLayerNormModel

class transformers.FlaxRobertaPreLayerNormModel

<来源>

( config: RobertaPreLayerNormConfig input_shape: Tuple = (1, 1) seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True gradient_checkpointing: bool = False **kwargs )

参数

  • config(RobertaPreLayerNormConfig) — 模型的所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只加载配置。查看 from_pretrained()方法以加载模型权重。

裸 RoBERTa-PreLayerNorm 模型变压器输出原始隐藏状态,而不带任何特定的头部。

此模型继承自 FlaxPreTrainedModel。查看超类文档以了解库为所有模型实现的通用方法(例如从 PyTorch 模型下载、保存和转换权重)。

此模型还是flax.linen.Module子类。将其用作常规 Flax 亚麻模块,并参考 Flax 文档以了解与一般用法和行为相关的所有事项。

最后,此模型支持固有的 JAX 功能,例如:

__call__

<来源>

( input_ids attention_mask = None token_type_ids = None position_ids = None head_mask = None encoder_hidden_states = None encoder_attention_mask = None params: dict = None dropout_rng: PRNGKey = None train: bool = False output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None past_key_values: dict = None ) → export const metadata = 'undefined';transformers.modeling_flax_outputs.FlaxBaseModelOutputWithPooling or tuple(torch.FloatTensor)

参数

  • input_ids (numpy.ndarray of shape (batch_size, sequence_length)) — 词汇表中输入序列标记的索引。

    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。

    什么是输入 ID?

  • attention_mask (numpy.ndarray of shape (batch_size, sequence_length), 可选) — 避免在填充标记索引上执行注意力的掩码。掩码值在 [0, 1] 中选择:

    • 1 表示未被 masked 的标记,

    • 0 表示被 masked 的标记。

    什么是注意力掩码?

  • token_type_ids (numpy.ndarray of shape (batch_size, sequence_length), 可选) — 指示输入的第一部分和第二部分的段标记索引。索引在 [0, 1] 中选择:

    • 0 对应于 句子 A 标记,

    • 1 对应于 句子 B 标记。

    什么是标记类型 ID?

  • position_ids (numpy.ndarray of shape (batch_size, sequence_length), 可选) — 每个输入序列标记在位置嵌入中的位置索引。在范围 [0, config.max_position_embeddings - 1] 中选择。

  • head_mask (numpy.ndarray of shape (batch_size, sequence_length), 可选) -- 用于使注意力模块的选定头部无效的掩码。掩码值在 [0, 1] 中选择:

    • 1 表示头部未被 masked

    • 0 表示头部被 masked

  • return_dict (bool, 可选) — 是否返回一个 ModelOutput 而不是一个普通的元组。

返回

transformers.modeling_flax_outputs.FlaxBaseModelOutputWithPooling 或 tuple(torch.FloatTensor)

一个 transformers.modeling_flax_outputs.FlaxBaseModelOutputWithPooling 或一个 torch.FloatTensor 元组(如果传递了 return_dict=Falseconfig.return_dict=False)包含根据配置(RobertaPreLayerNormConfig)和输入而异的各种元素。

  • last_hidden_state (jnp.ndarray of shape (batch_size, sequence_length, hidden_size)) — 模型最后一层的隐藏状态序列。

  • pooler_output (jnp.ndarray of shape (batch_size, hidden_size)) — 序列第一个标记(分类标记)的最后一层隐藏状态,进一步由线性层和 Tanh 激活函数处理。线性层的权重是在预训练期间从下一个句子预测(分类)目标中训练的。

  • hidden_states (tuple(jnp.ndarray), 可选, 当传递 output_hidden_states=Trueconfig.output_hidden_states=True 时返回) — 形状为 (batch_size, sequence_length, hidden_size)jnp.ndarray 元组(一个用于嵌入输出,一个用于每一层的输出)。

    模型在每一层输出的隐藏状态加上初始嵌入输出。

  • attentionstuple(jnp.ndarray)可选,当传递output_attentions=Trueconfig.output_attentions=True时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)jnp.ndarray元组(每层一个)。

    在注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。

FlaxRobertaPreLayerNormPreTrainedModel的前向方法,覆盖了__call__特殊方法。

虽然前向传递的步骤需要在此函数内定义,但应该在此之后调用Module实例,而不是在此处调用,因为前者负责运行预处理和后处理步骤,而后者会默默忽略它们。

示例:

>>> from transformers import AutoTokenizer, FlaxRobertaPreLayerNormModel

>>> tokenizer = AutoTokenizer.from_pretrained("andreasmadsen/efficient_mlm_m0.40")
>>> model = FlaxRobertaPreLayerNormModel.from_pretrained("andreasmadsen/efficient_mlm_m0.40")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="jax")
>>> outputs = model(**inputs)

>>> last_hidden_states = outputs.last_hidden_state

FlaxRobertaPreLayerNormForCausalLM

class transformers.FlaxRobertaPreLayerNormForCausalLM

< source >

( config: RobertaPreLayerNormConfig input_shape: Tuple = (1, 1) seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True gradient_checkpointing: bool = False **kwargs )

参数

  • config(RobertaPreLayerNormConfig) — 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型相关的权重,只加载配置。查看 from_pretrained()方法以加载模型权重。

在顶部带有语言建模头的 RobertaPreLayerNorm 模型(隐藏状态输出的线性层),例如用于自回归任务。

这个模型继承自 FlaxPreTrainedModel。查看超类文档以获取库为所有模型实现的通用方法(如从 PyTorch 模型下载、保存和转换权重)。

这个模型也是一个flax.linen.Module的子类。将其用作常规的 Flax linen Module,并参考 Flax 文档以获取有关一般用法和行为的所有相关信息。

最后,这个模型支持 JAX 的固有特性,比如:

__call__

< source >

( input_ids attention_mask = None token_type_ids = None position_ids = None head_mask = None encoder_hidden_states = None encoder_attention_mask = None params: dict = None dropout_rng: PRNGKey = None train: bool = False output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None past_key_values: dict = None ) → export const metadata = 'undefined';transformers.modeling_flax_outputs.FlaxCausalLMOutputWithCrossAttentions or tuple(torch.FloatTensor)

参数

  • input_ids(形状为(batch_size, sequence_length)numpy.ndarray) — 输入序列标记在词汇表中的索引。

    可以使用 AutoTokenizer 获取索引。查看 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()获取详细信息。

    什么是输入 ID?

  • attention_mask(形状为(batch_size, sequence_length)numpy.ndarray可选) — 避免在填充标记索引上执行注意力的掩码。选择在[0, 1]中的掩码值:

    • 1 代表未被“掩盖”的标记,

    • 0 代表被“掩盖”的标记。

    什么是注意力掩码?

  • token_type_ids(形状为(batch_size, sequence_length)numpy.ndarray可选) — 段标记索引,指示输入的第一部分和第二部分。索引选择在[0, 1]中:

    • 0 对应于句子 A的标记,

    • 1 对应于句子 B的标记。

    什么是 token type IDs?

  • position_ids(形状为(batch_size, sequence_length)numpy.ndarray可选)- 每个输入序列标记在位置嵌入中的位置索引。选择范围为[0, config.max_position_embeddings - 1]

  • head_mask(形状为(batch_size, sequence_length)numpy.ndarray可选)- 用于使注意力模块中选择的头部失效的掩码。掩码值选择在[0, 1]之间:

    • 1 表示头部是not masked

    • 0 表示头部是masked

  • return_dictbool可选)- 是否返回一个 ModelOutput 而不是一个普通的元组。

返回值

transformers.modeling_flax_outputs.FlaxCausalLMOutputWithCrossAttentions 或tuple(torch.FloatTensor)

一个 transformers.modeling_flax_outputs.FlaxCausalLMOutputWithCrossAttentions 或一个torch.FloatTensor元组(如果传递return_dict=Falseconfig.return_dict=False时)包含根据配置(RobertaPreLayerNormConfig)和输入的各种元素。

  • logits(形状为(batch_size, sequence_length, config.vocab_size)jnp.ndarray)- 语言建模头的预测分数(SoftMax 之前每个词汇标记的分数)。

  • hidden_statestuple(jnp.ndarray)可选,当传递output_hidden_states=Trueconfig.output_hidden_states=True时返回)- 形状为(batch_size, sequence_length, hidden_size)jnp.ndarray元组(一个用于嵌入的输出,一个用于每一层的输出)。

    模型在每一层输出的隐藏状态加上初始嵌入输出。

  • attentionstuple(jnp.ndarray)可选,当传递output_attentions=Trueconfig.output_attentions=True时返回)- 形状为(batch_size, num_heads, sequence_length, sequence_length)jnp.ndarray元组(每层一个)的元组。

    注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。

  • cross_attentionstuple(jnp.ndarray)可选,当传递output_attentions=Trueconfig.output_attentions=True时返回)- 形状为(batch_size, num_heads, sequence_length, sequence_length)jnp.ndarray元组(每层一个)的元组。

    交叉注意力 softmax 后的交叉注意力权重,用于计算交叉注意力头中的加权平均值。

  • past_key_valuestuple(tuple(jnp.ndarray))可选,当传递use_cache=Trueconfig.use_cache=True时返回)- 长度为config.n_layersjnp.ndarray元组的元组,每个元组包含自注意力和交叉注意力层的缓存键、值状态。仅在config.is_decoder = True时相关。

    包含预先计算的隐藏状态(注意力块中的键和值),可用于加速顺序解码(见past_key_values输入)。

FlaxRobertaPreLayerNormPreTrainedModel的前向方法,覆盖了__call__特殊方法。

虽然前向传递的步骤需要在这个函数内定义,但应该在此之后调用Module实例,而不是这个,因为前者负责运行前处理和后处理步骤,而后者会默默地忽略它们。

示例:

>>> from transformers import AutoTokenizer, FlaxRobertaPreLayerNormForCausalLM

>>> tokenizer = AutoTokenizer.from_pretrained("andreasmadsen/efficient_mlm_m0.40")
>>> model = FlaxRobertaPreLayerNormForCausalLM.from_pretrained("andreasmadsen/efficient_mlm_m0.40")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="np")
>>> outputs = model(**inputs)

>>> # retrieve logts for next token
>>> next_token_logits = outputs.logits[:, -1]

FlaxRobertaPreLayerNormForMaskedLM

class transformers.FlaxRobertaPreLayerNormForMaskedLM

<来源>

( config: RobertaPreLayerNormConfig input_shape: Tuple = (1, 1) seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True gradient_checkpointing: bool = False **kwargs )

参数

  • config (RobertaPreLayerNormConfig) — 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只加载配置。查看 from_pretrained()方法以加载模型权重。

RoBERTa-PreLayerNorm 模型顶部带有语言建模头。

此模型继承自 FlaxPreTrainedModel。查看超类文档以了解库为所有模型实现的通用方法(例如从 PyTorch 模型下载、保存和转换权重)。

此模型还是一个flax.linen.Module子类。将其用作常规 Flax linen 模块,并参考 Flax 文档以了解与一般使用和行为相关的所有事项。

最后,此模型支持 JAX 的内在特性,例如:

__call__

< source >

( input_ids attention_mask = None token_type_ids = None position_ids = None head_mask = None encoder_hidden_states = None encoder_attention_mask = None params: dict = None dropout_rng: PRNGKey = None train: bool = False output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None past_key_values: dict = None ) → export const metadata = 'undefined';transformers.modeling_flax_outputs.FlaxBaseModelOutputWithPooling or tuple(torch.FloatTensor)

参数

  • input_ids (numpy.ndarray of shape (batch_size, sequence_length)) — 词汇表中输入序列标记的索引。

    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()。

    输入 ID 是什么?

  • attention_mask (numpy.ndarray of shape (batch_size, sequence_length), optional) — 用于避免在填充标记索引上执行注意力的掩码。掩码值选择在[0, 1]之间:

    • 1 表示未被掩盖的标记,

    • 0 表示被掩盖的标记。

    什么是注意力掩码?

  • token_type_ids (numpy.ndarray of shape (batch_size, sequence_length), optional) — 指示输入的第一部分和第二部分的段标记索引。索引选择在[0, 1]之间:

    • 0 对应于 句子 A 标记,

    • 1 对应于 句子 B 标记。

    什么是标记类型 ID?

  • position_ids (numpy.ndarray of shape (batch_size, sequence_length), optional) — 每个输入序列标记在位置嵌入中的位置索引。选择范围为[0, config.max_position_embeddings - 1]

  • head_mask (numpy.ndarray of shape (batch_size, sequence_length), optional) -- 用于使注意力模块中选定头部失效的掩码。掩码值选择在[0, 1]`之间:

    • 1 表示头部未被掩盖,

    • 0 表示头部被掩盖

  • return_dict (bool, optional) — 是否返回 ModelOutput 而不是普通元组。

返回

transformers.modeling_flax_outputs.FlaxBaseModelOutputWithPooling 或 tuple(torch.FloatTensor)

一个 transformers.modeling_flax_outputs.FlaxBaseModelOutputWithPooling 或一个torch.FloatTensor元组(如果传递return_dict=Falseconfig.return_dict=False)包含根据配置(RobertaPreLayerNormConfig)和输入不同元素。

  • last_hidden_state (形状为(batch_size, sequence_length, hidden_size)的 jnp.ndarray) — 模型最后一层的隐藏状态的序列。

  • pooler_output (形状为(batch_size, hidden_size)的 jnp.ndarray) — 序列的第一个标记(分类标记)的最后一层隐藏状态,经过线性层和 Tanh 激活函数进一步处理。线性层的权重是在预训练期间从下一个句子预测(分类)目标中训练的。

  • hidden_states (tuple(jnp.ndarray), 可选的, 当传递output_hidden_states=Trueconfig.output_hidden_states=True时返回) — 形状为(batch_size, sequence_length, hidden_size)jnp.ndarray元组(一个用于嵌入的输出 + 一个用于每个层的输出)。

    每个层的模型的隐藏状态以及初始嵌入输出。

  • attentions (tuple(jnp.ndarray), 可选的, 当传递output_attentions=Trueconfig.output_attentions=True时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)jnp.ndarray元组(每个层一个)。

    在自注意力头中使用注意力 softmax 后的注意力权重,用于计算加权平均值。

FlaxRobertaPreLayerNormPreTrainedModel的前向方法覆盖了__call__特殊方法。

虽然前向传递的步骤需要在此函数内定义,但应该在此之后调用Module实例,而不是在此处调用,因为前者会处理运行前后处理步骤,而后者会默默忽略它们。

示例:

>>> from transformers import AutoTokenizer, FlaxRobertaPreLayerNormForMaskedLM

>>> tokenizer = AutoTokenizer.from_pretrained("andreasmadsen/efficient_mlm_m0.40")
>>> model = FlaxRobertaPreLayerNormForMaskedLM.from_pretrained("andreasmadsen/efficient_mlm_m0.40")

>>> inputs = tokenizer("The capital of France is [MASK].", return_tensors="jax")

>>> outputs = model(**inputs)
>>> logits = outputs.logits

FlaxRobertaPreLayerNormForSequenceClassification

class transformers.FlaxRobertaPreLayerNormForSequenceClassification

<来源>

( config: RobertaPreLayerNormConfig input_shape: Tuple = (1, 1) seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True gradient_checkpointing: bool = False **kwargs )

参数

  • config (RobertaPreLayerNormConfig) — 包含模型所有参数的模型配置类。使用配置文件初始化不会加载与模型相关的权重,只会加载配置。查看 from_pretrained()方法以加载模型权重。

带有顶部序列分类/回归头(在池化输出之上的线性层)的 RobertaPreLayerNorm 模型,例如用于 GLUE 任务。

这个模型继承自 FlaxPreTrainedModel。查看超类文档以获取库为所有模型实现的通用方法(如下载、保存和从 PyTorch 模型转换权重)。

这个模型也是一个flax.linen.Module子类。将其用作常规的 Flax 亚麻模块,并参考 Flax 文档以获取与一般用法和行为相关的所有内容。

最后,这个模型支持内在的 JAX 特性,比如:

__call__

<来源>

( input_ids attention_mask = None token_type_ids = None position_ids = None head_mask = None encoder_hidden_states = None encoder_attention_mask = None params: dict = None dropout_rng: PRNGKey = None train: bool = False output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None past_key_values: dict = None ) → export const metadata = 'undefined';transformers.modeling_flax_outputs.FlaxSequenceClassifierOutput or tuple(torch.FloatTensor)

参数

  • input_ids (numpy.ndarray,形状为(batch_size, sequence_length)) — 词汇表中输入序列标记的索引。

    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()。

    什么是输入 ID?

  • attention_mask (numpy.ndarray,形状为(batch_size, sequence_length)可选) — 用于避免在填充标记索引上执行注意力的掩码。掩码值选定在[0, 1]之间:

    • 1 表示未被掩码的标记,

    • 0 表示被掩码的标记。

    什么是注意力掩码?

  • token_type_ids (numpy.ndarray,形状为(batch_size, sequence_length)可选) — 段标记索引,指示输入的第一部分和第二部分。索引选定在[0, 1]之间:

    • 0 对应于句子 A的标记,

    • 1 对应于句子 B的标记。

    什么是标记类型 ID?

  • position_ids (numpy.ndarray,形状为(batch_size, sequence_length)可选) — 每个输入序列标记在位置嵌入中的位置索引。在范围[0, config.max_position_embeddings - 1]中选择。

  • head_mask (numpy.ndarray,形状为(batch_size, sequence_length)可选) -- 用于使注意力模块的选定头部失效的掩码。掩码值选定在[0, 1]之间:

    • 1 表示头部未被掩码

    • 0 表示头部被掩码

  • return_dict (bool, optional) — 是否返回一个 ModelOutput 而不是一个普通的元组。

返回

transformers.modeling_flax_outputs.FlaxSequenceClassifierOutput 或tuple(torch.FloatTensor)

一个 transformers.modeling_flax_outputs.FlaxSequenceClassifierOutput 或一个torch.FloatTensor元组(如果传递return_dict=Falseconfig.return_dict=False时)包含根据配置(RobertaPreLayerNormConfig)和输入的各种元素。

  • logits (jnp.ndarray,形状为(batch_size, config.num_labels)) — 分类(如果 config.num_labels==1 则为回归)得分(SoftMax 之前)。

  • hidden_states (tuple(jnp.ndarray)可选,当传递output_hidden_states=Trueconfig.output_hidden_states=True时返回) — 形状为(batch_size, sequence_length, hidden_size)jnp.ndarray元组(一个用于嵌入的输出 + 一个用于每一层的输出)。

    模型在每一层输出的隐藏状态以及初始嵌入输出。

  • attentions (tuple(jnp.ndarray)可选,当传递output_attentions=Trueconfig.output_attentions=True时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)jnp.ndarray元组(每层一个)。

    在自注意力头中用于计算加权平均值的注意力 softmax 之后的注意力权重。

FlaxRobertaPreLayerNormPreTrainedModel的前向方法,覆盖了__call__特殊方法。

虽然前向传递的配方需要在此函数内定义,但应该在此之后调用Module实例,而不是在此处调用,因为前者会负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例:

>>> from transformers import AutoTokenizer, FlaxRobertaPreLayerNormForSequenceClassification

>>> tokenizer = AutoTokenizer.from_pretrained("andreasmadsen/efficient_mlm_m0.40")
>>> model = FlaxRobertaPreLayerNormForSequenceClassification.from_pretrained("andreasmadsen/efficient_mlm_m0.40")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="jax")

>>> outputs = model(**inputs)
>>> logits = outputs.logits

FlaxRobertaPreLayerNormForMultipleChoice

class transformers.FlaxRobertaPreLayerNormForMultipleChoice

<来源>

( config: RobertaPreLayerNormConfig input_shape: Tuple = (1, 1) seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True gradient_checkpointing: bool = False **kwargs )

参数

  • config(RobertaPreLayerNormConfig)— 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型相关的权重,只加载配置。查看 from_pretrained()方法以加载模型权重。

RobertaPreLayerNorm 模型,顶部带有多选分类头(汇总输出上的线性层和 softmax),例如用于 RocStories/SWAG 任务。

此模型继承自 FlaxPreTrainedModel。查看超类文档以获取库为所有模型实现的通用方法(例如从 PyTorch 模型下载、保存和转换权重)。

此模型也是flax.linen.Module的子类。将其用作常规的 Flax 亚麻模块,并参考 Flax 文档以获取与一般用法和行为相关的所有内容。

最后,此模型支持 JAX 的内在特性,例如:

__call__

<来源>

( input_ids attention_mask = None token_type_ids = None position_ids = None head_mask = None encoder_hidden_states = None encoder_attention_mask = None params: dict = None dropout_rng: PRNGKey = None train: bool = False output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None past_key_values: dict = None ) → export const metadata = 'undefined';transformers.modeling_flax_outputs.FlaxMultipleChoiceModelOutput or tuple(torch.FloatTensor)

参数

  • input_ids(形状为(batch_size, num_choices, sequence_length)numpy.ndarray)— 词汇表中输入序列标记的索引。

    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()。

    什么是输入 ID?

  • attention_mask(形状为(batch_size, num_choices, sequence_length)numpy.ndarray可选)— 避免在填充标记索引上执行注意力的蒙版。蒙版值在[0, 1]中选择:

    • 1 表示未被屏蔽的标记,

    • 0 表示被屏蔽的标记。

    注意力蒙版是什么?

  • token_type_ids(形状为(batch_size, num_choices, sequence_length)numpy.ndarray可选)— 段标记索引,指示输入的第一部分和第二部分。索引在[0, 1]中选择:

    • 0 对应于句子 A标记,

    • 1 对应于句子 B标记。

    什么是标记类型 ID?

  • position_ids(形状为(batch_size, num_choices, sequence_length)numpy.ndarray可选)— 每个输入序列标记在位置嵌入中的位置索引。在范围[0, config.max_position_embeddings - 1]中选择。

  • head_mask (numpy.ndarray,形状为 (batch_size, num_choices, sequence_length)可选) -- 用于使注意力模块的选定头部失效的掩码。掩码值选定在 [0, 1]

    • 1 表示头部是 未屏蔽

    • 0 表示头部是 屏蔽

  • return_dict (bool, 可选) — 是否返回一个 ModelOutput 而不是一个普通的元组。

返回

transformers.modeling_flax_outputs.FlaxMultipleChoiceModelOutput 或 tuple(torch.FloatTensor)

一个 transformers.modeling_flax_outputs.FlaxMultipleChoiceModelOutput 或一个 torch.FloatTensor 元组(如果传递 return_dict=Falseconfig.return_dict=False)包含根据配置(RobertaPreLayerNormConfig)和输入的各种元素。

  • logits (jnp.ndarray,形状为 (batch_size, num_choices)) — num_choices 是输入张量的第二维度。(参见上面的 input_ids)。

    分类分数(SoftMax 之前)。

  • hidden_states (tuple(jnp.ndarray), 可选, 当传递 output_hidden_states=Trueconfig.output_hidden_states=True 时返回) — 形状为 (batch_size, sequence_length, hidden_size)jnp.ndarray 元组(一个用于嵌入的输出 + 一个用于每层的输出)。

    模型在每一层输出的隐藏状态加上初始嵌入输出。

  • attentions (tuple(jnp.ndarray), 可选, 当传递 output_attentions=Trueconfig.output_attentions=True 时返回) — 形状为 (batch_size, num_heads, sequence_length, sequence_length)jnp.ndarray 元组(每层一个)。

    注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。

FlaxRobertaPreLayerNormPreTrainedModel 的前向方法,覆盖了 __call__ 特殊方法。

虽然前向传递的步骤需要在此函数内定义,但应该在之后调用 Module 实例而不是此函数,因为前者会负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例:

>>> from transformers import AutoTokenizer, FlaxRobertaPreLayerNormForMultipleChoice

>>> tokenizer = AutoTokenizer.from_pretrained("andreasmadsen/efficient_mlm_m0.40")
>>> model = FlaxRobertaPreLayerNormForMultipleChoice.from_pretrained("andreasmadsen/efficient_mlm_m0.40")

>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
>>> choice0 = "It is eaten with a fork and a knife."
>>> choice1 = "It is eaten while held in the hand."

>>> encoding = tokenizer([prompt, prompt], [choice0, choice1], return_tensors="jax", padding=True)
>>> outputs = model(**{k: v[None, :] for k, v in encoding.items()})

>>> logits = outputs.logits

FlaxRobertaPreLayerNormForTokenClassification

class transformers.FlaxRobertaPreLayerNormForTokenClassification

< source >

( config: RobertaPreLayerNormConfig input_shape: Tuple = (1, 1) seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True gradient_checkpointing: bool = False **kwargs )

参数

  • config (RobertaPreLayerNormConfig) — 模型的所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只会加载配置。查看 from_pretrained() 方法以加载模型权重。

RobertaPreLayerNorm 模型,顶部带有一个标记分类头(隐藏状态输出的线性层),例如用于命名实体识别(NER)任务。

此模型继承自 FlaxPreTrainedModel。查看超类文档以了解库为所有模型实现的通用方法(如从 PyTorch 模型下载、保存和转换权重)。

此模型也是一个 flax.linen.Module 子类。将其用作常规的 Flax linen 模块,并参考 Flax 文档以了解与一般使用和行为相关的所有事项。

最后,此模型支持 JAX 的固有特性,例如:

__call__

<来源>

( input_ids attention_mask = None token_type_ids = None position_ids = None head_mask = None encoder_hidden_states = None encoder_attention_mask = None params: dict = None dropout_rng: PRNGKey = None train: bool = False output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None past_key_values: dict = None ) → export const metadata = 'undefined';transformers.modeling_flax_outputs.FlaxTokenClassifierOutput or tuple(torch.FloatTensor)

参数

  • input_ids(形状为(batch_size, sequence_length)numpy.ndarray)— 词汇表中输入序列标记的索引。

    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()。

    什么是输入 ID?

  • attention_mask(形状为(batch_size, sequence_length)numpy.ndarray可选)— 用于避免在填充标记索引上执行注意力的掩码。掩码值选定在[0, 1]中:

    • 1 表示未被掩盖的标记,

    • 0 表示被掩盖的标记。

    什么是注意力掩码?

  • token_type_ids(形状为(batch_size, sequence_length)numpy.ndarray可选)— 段标记索引,指示输入的第一部分和第二部分。索引选定在[0, 1]中:

    • 0 对应于句子 A标记,

    • 1 对应于句子 B标记。

    什么是标记类型 ID?

  • position_ids(形状为(batch_size, sequence_length)numpy.ndarray可选)— 每个输入序列标记在位置嵌入中的位置索引。在范围[0, config.max_position_embeddings - 1]中选定。

  • head_mask(形状为(batch_size, sequence_length)numpy.ndarray,可选)-- 用于使注意力模块的选定头部失效的掩码。掩码值选定在[0, 1]

    • 1 表示头部“未被掩盖”,

    • 0 表示头部“被掩盖”。

  • return_dictbool可选)— 是否返回 ModelOutput 而不是普通元组。

返回值

transformers.modeling_flax_outputs.FlaxTokenClassifierOutput 或tuple(torch.FloatTensor)

一个 transformers.modeling_flax_outputs.FlaxTokenClassifierOutput 或者一个torch.FloatTensor元组(如果传递了return_dict=False或者config.return_dict=False)包括各种元素,取决于配置(RobertaPreLayerNormConfig)和输入。

  • logits(形状为(batch_size, sequence_length, config.num_labels)jnp.ndarray)— 分类分数(SoftMax 之前)。

  • hidden_statestuple(jnp.ndarray)可选,当传递output_hidden_states=True或者config.output_hidden_states=True时返回)— 形状为(batch_size, sequence_length, hidden_size)jnp.ndarray元组(一个用于嵌入的输出 + 一个用于每一层的输出)。

    模型在每一层输出的隐藏状态加上初始嵌入输出。

  • attentionstuple(jnp.ndarray)可选,当传递output_attentions=True或者config.output_attentions=True时返回)— 形状为(batch_size, num_heads, sequence_length, sequence_length)jnp.ndarray元组(每层一个)。

    在注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。

FlaxRobertaPreLayerNormPreTrainedModel 的前向方法,覆盖了 __call__ 特殊方法。

虽然前向传递的步骤需要在这个函数内定义,但应该在之后调用 Module 实例,而不是这个函数,因为前者会处理运行前后处理步骤,而后者会默默地忽略它们。

示例:

>>> from transformers import AutoTokenizer, FlaxRobertaPreLayerNormForTokenClassification

>>> tokenizer = AutoTokenizer.from_pretrained("andreasmadsen/efficient_mlm_m0.40")
>>> model = FlaxRobertaPreLayerNormForTokenClassification.from_pretrained("andreasmadsen/efficient_mlm_m0.40")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="jax")

>>> outputs = model(**inputs)
>>> logits = outputs.logits

FlaxRobertaPreLayerNormForQuestionAnswering

class transformers.FlaxRobertaPreLayerNormForQuestionAnswering

<来源>

( config: RobertaPreLayerNormConfig input_shape: Tuple = (1, 1) seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True gradient_checkpointing: bool = False **kwargs )

参数

  • config(RobertaPreLayerNormConfig) — 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型相关的权重,只会加载配置。查看 from_pretrained() 方法以加载模型权重。

RobertaPreLayerNorm 模型,顶部带有一个用于提取式问答任务(如 SQuAD)的跨度分类头(在隐藏状态输出之上的线性层,用于计算“跨度起始对数”和“跨度结束对数”)。

这个模型继承自 FlaxPreTrainedModel。查看超类文档以获取库为所有模型实现的通用方法(如从 PyTorch 模型下载、保存和转换权重)。

这个模型也是一个 flax.linen.Module 的子类。将其用作常规的 Flax linen 模块,并参考 Flax 文档以获取有关一般用法和行为的所有相关信息。

最后,这个模型支持 JAX 的固有特性,例如:

__call__

<来源>

( input_ids attention_mask = None token_type_ids = None position_ids = None head_mask = None encoder_hidden_states = None encoder_attention_mask = None params: dict = None dropout_rng: PRNGKey = None train: bool = False output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None past_key_values: dict = None ) → export const metadata = 'undefined';transformers.modeling_flax_outputs.FlaxQuestionAnsweringModelOutput or tuple(torch.FloatTensor)

参数

  • input_ids (numpy.ndarray,形状为 (batch_size, sequence_length)) — 词汇表中输入序列标记的索引。

    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。

    什么是输入 ID?

  • attention_mask (numpy.ndarray,形状为 (batch_size, sequence_length)可选) — 用于避免在填充标记索引上执行注意力的掩码。掩码值选择在 [0, 1] 之间:

    • 对于“未屏蔽”的标记,为 1,

    • 对于“屏蔽”的标记为 0。

    什么是注意力掩码?

  • token_type_ids (numpy.ndarray,形状为 (batch_size, sequence_length)可选) — 指示输入的第一部分和第二部分的段标记索引。索引选择在 [0, 1] 之间:

    • 0 对应于 句子 A 标记,

    • 1 对应于 句子 B 标记。

    什么是标记类型 ID?

  • position_ids (numpy.ndarray,形状为 (batch_size, sequence_length)可选) — 每个输入序列标记在位置嵌入中的位置索引。选择范围为 [0, config.max_position_embeddings - 1]

  • head_mask (numpy.ndarray,形状为 (batch_size, sequence_length)可选) -- 用于使注意力模块的选定头部失效的掩码。掩码值选择在 [0, 1]

    • 1 表示头部未被“掩盖”,

    • 0 表示头部被“掩盖”。

  • return_dict (bool可选) — 是否返回一个 ModelOutput 而不是一个普通元组。

返回

transformers.modeling_flax_outputs.FlaxQuestionAnsweringModelOutput 或 tuple(torch.FloatTensor)

一个 transformers.modeling_flax_outputs.FlaxQuestionAnsweringModelOutput 或一个 torch.FloatTensor 元组(如果传递了 return_dict=False 或当 config.return_dict=False 时),包括根据配置(RobertaPreLayerNormConfig)和输入的各种元素。

  • start_logits (jnp.ndarray,形状为 (batch_size, sequence_length)) — 跨度起始分数(SoftMax 之前)。

  • end_logits (jnp.ndarray,形状为 (batch_size, sequence_length)) — 跨度结束分数(SoftMax 之前)。

  • hidden_states (tuple(jnp.ndarray)可选,当传递了 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — 形状为 (batch_size, sequence_length, hidden_size)jnp.ndarray 元组(一个用于嵌入的输出 + 一个用于每个层的输出)。

    模型在每一层输出的隐藏状态以及初始嵌入输出。

  • attentions (tuple(jnp.ndarray)可选,当传递了 output_attentions=True 或当 config.output_attentions=True 时返回) — 形状为 (batch_size, num_heads, sequence_length, sequence_length)jnp.ndarray 元组(每层一个)。

    注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。

FlaxRobertaPreLayerNormPreTrainedModel 的前向方法,覆盖了 __call__ 特殊方法。

虽然前向传递的步骤需要在此函数内定义,但应该在之后调用 Module 实例而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例:

>>> from transformers import AutoTokenizer, FlaxRobertaPreLayerNormForQuestionAnswering

>>> tokenizer = AutoTokenizer.from_pretrained("andreasmadsen/efficient_mlm_m0.40")
>>> model = FlaxRobertaPreLayerNormForQuestionAnswering.from_pretrained("andreasmadsen/efficient_mlm_m0.40")

>>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"
>>> inputs = tokenizer(question, text, return_tensors="jax")

>>> outputs = model(**inputs)
>>> start_scores = outputs.start_logits
>>> end_scores = outputs.end_logits
posted @ 2024-06-22 14:10  绝不原创的飞龙  阅读(7)  评论(0编辑  收藏  举报