绘图函数
import matplotlib. pyplot as plt
import numpy as np
def show ( ori_func, ft, sampling_period = 5 ) :
n = len ( ori_func)
interval = sampling_period / n
plt. subplot( 2 , 1 , 1 )
plt. plot( np. arange( 0 , sampling_period, interval) , ori_func, 'black' )
plt. xlabel( 'Time' ) , plt. ylabel( 'Amplitude' )
plt. subplot( 2 , 1 , 2 )
frequency = np. arange( n / 2 ) / ( n * interval)
nfft = abs ( ft[ range ( int ( n / 2 ) ) ] / n )
plt. plot( frequency, nfft, 'red' )
plt. xlabel( 'Freq (Hz)' ) , plt. ylabel( 'Amp. Spectrum' )
plt. show( )
信号处理
time = np. arange( 0 , 5 , .005 )
x = np. sin( 2 * np. pi * 1 * time)
y = np. fft. fft( x)
show( x, y)
x2 = np. sin( 2 * np. pi * 20 * time)
x3 = np. sin( 2 * np. pi * 60 * time)
x += x2 + x3
y = np. fft. fft( x)
show( x, y)
x = np. zeros( len ( time) )
x[ : : 20 ] = 1
y = np. fft. fft( x)
show( x, y)
x = np. zeros( len ( time) )
x[ 380 : 400 ] = np. arange( 0 , 1 , .05 )
x[ 400 : 420 ] = np. arange( 1 , 0 , - .05 )
y = np. fft. fft( x)
show( x, y)
x = np. random. random( 100 )
y = np. fft. fft( x)
show( x, y)
原理
x = np. random. random( 500 )
n = len ( x)
m = np. arange( n)
k = m. reshape( ( n, 1 ) )
M = np. exp( - 2j * np. pi * k * m / n)
y = np. dot( M, x)
np. allclose( y, np. fft. fft( x) )
'''
%timeit np.dot(np.exp(-2j * np.pi * np.arange(n).reshape((n, 1)) * np.arange(n) / n), x)
10 loops, best of 3: 18.5 ms per loop
%timeit np.fft.fft(x)
100000 loops, best of 3: 10.9 µs per loop
'''
# 傅里叶逆变换
M2 = np.exp(2j * np.pi * k * m / n)
x2 = np.dot(y, M2) / n
np.allclose(x, x2)
# True
np.allclose(x, np.fft.ifft(y))
# True
# 创建 10 个 0~9 随机整数的信号
a = np.random.randint(10, size = 10)
a
# array([7, 4, 9, 9, 6, 9, 2, 6, 8, 3])
a.mean()
# 6.2999999999999998
# 进行傅里叶变换
A = np.fft.fft(a)
A
'''
array([ 63.00000000 +0.00000000e+00j,
-2.19098301 -6.74315233e+00j,
-5.25328890 +4.02874005e+00j,
-3.30901699 -2.40414157e+00j,
13.75328890 -1.38757276e-01j,
1.00000000 -2.44249065e-15j,
13.75328890 +1.38757276e-01j,
-3.30901699 +2.40414157e+00j,
-5.25328890 -4.02874005e+00j,
-2.19098301 +6.74315233e+00j])
'''
A[0] / 10
# (6.2999999999999998+0j)
A[int(10 / 2)]
# (1-2.4424906541753444e-15j)
# A[0] 是 0 频率的项
# A[1:n/2] 是正频率项
# A[n/2 + 1: n] 是负频率项
# 如果我们要把 0 频率项调整到中间
# 可以调用 fft.fftshift
np.fft.fftshift(A)
'''
array([ 1.00000000 -2.44249065e-15j,
13.75328890 +1.38757276e-01j,
-3.30901699 +2.40414157e+00j,
-5.25328890 -4.02874005e+00j,
-2.19098301 +6.74315233e+00j,
63.00000000 +0.00000000e+00j,
-2.19098301 -6.74315233e+00j,
-5.25328890 +4.02874005e+00j,
-3.30901699 -2.40414157e+00j,
13.75328890 -1.38757276e-01j])
'''
# fft2 用于二维,fftn 用于多维
x = np.random.random(24)
x.shape = 2,12
y2 = np.fft.fft2(x)
x.shape = 1,2,12
y3 = np.fft.fftn(x, axes = (1, 2))
np.allclose(y2, y3)
# True
应用
from matplotlib import image
img = image. imread( './scientist.png' )
gray_img = np. dot( img[ : , : , : 3 ] , [ .21 , .72 , .07 ] )
gray_img. shape
plt. imshow( gray_img, cmap = plt. get_cmap( 'gray' ) )
plt. show( )
# fft2 是二维数组的傅里叶变换
# 将空域转换为频域
fft = np.fft.fft2(gray_img)
amp_spectrum = np.abs(fft)
plt.imshow(np.log(amp_spectrum))
# <matplotlib.image.AxesImage at 0xcdeff60>
plt.show()
fft_shift = np.fft.fftshift(fft)
plt.imshow(np.log(np.abs(fft_shift)))
# <matplotlib.image.AxesImage at 0xd201dd8>
plt.show()
# 放大图像
# 我们向 fft_shift 插入零频率,将其尺寸扩大两倍
m, n = fft_shift.shape
b = np.zeros((int(m / 2), n))
c = np.zeros((2 * m - 1, int(n / 2)))
fft_shift = np.concatenate((b, fft_shift, b), axis = 0)
fft_shift = np.concatenate((c, fft_shift, c), axis = 1)
# 然后再转换回去
ifft = np.fft.ifft2(np.fft.ifftshift(fft_shift))
ifft.shape
# (633L, 1321L)
ifft = np.real(ifft)
plt.imshow(ifft, cmap = plt.get_cmap('gray'))
# <matplotlib.image.AxesImage at 0xf9a0f98>
plt.show()