TensorFlow HOWTO 1.2 LASSO、岭和 Elastic Net

1.2 LASSO、岭和 Elastic Net

当参数变多的时候,就要考虑使用正则化进行限制,防止过拟合。

操作步骤

导入所需的包。

import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
import sklearn.datasets as ds
import sklearn.model_selection as ms

导入数据,并进行预处理。我们使用波士顿数据集所有数据的全部特征。

boston = ds.load_boston()

x_ = boston.data
y_ = np.expand_dims(boston.target, 1)

x_train, x_test, y_train, y_test = \
    ms.train_test_split(x_, y_, train_size=0.7, test_size=0.3)
    
mu_train = x_train.mean(0)
sigma_train = x_train.std(0)
x_train = (x_train - mu_train) / sigma_train
x_test = (x_test - mu_train) / sigma_train

定义超参数。

n_input = 13
n_epoch = 2000
lr = 0.05
lam = 0.1
l1_ratio = 0.5
变量含义
n_input样本特征数
n_epoch迭代数
lr学习率
lam正则化系数
l1_ratioL1 正则化比例。如果它是 1,模型为 LASSO 回归;如果它是 0,模型为岭回归;如果在 01 之间,模型为 Elastic Net。

搭建模型。

变量含义
x输入
y真实标签
w权重
b偏置
z输出,也就是标签预测值
x = tf.placeholder(tf.float64, [None, n_input])
y = tf.placeholder(tf.float64, [None, 1])
w = tf.Variable(np.random.rand(n_input, 1))
b = tf.Variable(np.random.rand(1, 1))
z = x @ w + b

定义损失、优化操作、和 R 方度量指标。

我们在 MSE 基础上加上两个正则项:

L 1 = λ 1 ∥ w ∥ 1 L 2 = λ 2 ∥ w ∥ 2 L = L M S E + L 1 + L 2 \begin{matrix} L_1 = \lambda_1 \|w\|_1 \\ L_2 = \lambda_2 \|w\|^2 \\ L = L_{MSE} + L_1 + L_2 \end{matrix} L1=λ1w1L2=λ2w2L=LMSE+L1+L2

变量含义
mse_lossMSE 损失
l1_lossL1 损失
l2_lossL2 损失
loss总损失
op优化操作
y_meany的均值
r_sqrR 方值
mse_loss = tf.reduce_mean((z - y) ** 2)
l1_loss = lam * l1_ratio * tf.reduce_sum(tf.abs(w))
l2_loss = lam * (1 - l1_ratio) * tf.reduce_sum(w ** 2)
loss = mse_loss + l1_loss + l2_loss
op = tf.train.AdamOptimizer(lr).minimize(loss)

y_mean = tf.reduce_mean(y)
r_sqr = 1 - tf.reduce_sum((y - z) ** 2) / tf.reduce_sum((y - y_mean) ** 2)

使用训练集训练模型。

losses = []
r_sqrs = []

with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())
    for e in range(n_epoch):
        _, loss_ = sess.run([op, loss], feed_dict={x: x_train, y: y_train})
        losses.append(loss_)

使用测试集计算 R 方。

        r_sqr_ = sess.run(r_sqr, feed_dict={x: x_test, y: y_test})
        r_sqrs.append(r_sqr_)

每一百步打印损失和度量值。

        if e % 100 == 0:
            print(f'epoch: {e}, loss: {loss_}, r_sqr: {r_sqr_}')

输出:

epoch: 0, loss: 601.4143942455931, r_sqr: -5.632461200109857
epoch: 100, loss: 337.83817233312953, r_sqr: -2.8921127959091235
epoch: 200, loss: 205.95485710264686, r_sqr: -1.3905038082279204
epoch: 300, loss: 122.56157140781264, r_sqr: -0.4299323503419834
epoch: 400, loss: 73.34245865955972, r_sqr: 0.13473129501015224
epoch: 500, loss: 46.62652385307641, r_sqr: 0.4391669119513518
epoch: 600, loss: 33.418871666746185, r_sqr: 0.5880392599137905
epoch: 700, loss: 27.51559958401544, r_sqr: 0.6533498987634062
epoch: 800, loss: 25.14275351335227, r_sqr: 0.6787325098436232
epoch: 900, loss: 24.28818622078879, r_sqr: 0.6872955402664112
epoch: 1000, loss: 24.01321943982539, r_sqr: 0.689688496343003
epoch: 1100, loss: 23.93439017638524, r_sqr: 0.6901611522536858
epoch: 1200, loss: 23.914316369424643, r_sqr: 0.690163604062231
epoch: 1300, loss: 23.909792588385457, r_sqr: 0.6901031472929803
epoch: 1400, loss: 23.908894366923214, r_sqr: 0.6900616479035429
epoch: 1500, loss: 23.90873804289015, r_sqr: 0.6900411329923608
epoch: 1600, loss: 23.90871433783755, r_sqr: 0.6900324529674866
epoch: 1700, loss: 23.908711226897406, r_sqr: 0.690029151344134
epoch: 1800, loss: 23.908710876248833, r_sqr: 0.6900280037335323
epoch: 1900, loss: 23.908710842591514, r_sqr: 0.6900276378081478

绘制训练集上的损失。

plt.figure()
plt.plot(losses)
plt.title('Loss on Training Set')
plt.xlabel('#epoch')
plt.ylabel('MSE')
plt.show()

绘制测试集上的 R 方。

plt.figure()
plt.plot(r_sqrs)
plt.title('$R^2$ on Testing Set')
plt.xlabel('#epoch')
plt.ylabel('$R^2$')
plt.show()

扩展阅读

posted @ 2018-11-23 20:58  绝不原创的飞龙  阅读(15)  评论(0编辑  收藏  举报  来源