ApacheCN 翻译活动进度公告 2019.3.17

我们是一个大型开源社区,旗下 QQ 群共 9000 余人,Github Star 数量超过 20k 个,网站日 uip 超过 4k,拥有 CSDN 博客专家和简书程序员优秀作者认证。我们组织公益性的翻译活动、学习活动和比赛组队活动,并和 DataWhale、LinuxStory 等国内著名开源组织保持良好的合作关系。

与商业组织不同,我们并不会追逐热点,或者唯利是图。作为公益组织,我们将完成项目放在首要位置,并有足够时间把项目打磨到极致。我们希望做出广大 AI 爱好者真正需要的东西,打造真正有价值的长尾作品。

seaborn 0.9 中文文档

参与方式:https://github.com/apachecn/seaborn-doc-zh/blob/master/CONTRIBUTING.md

整体进度:https://github.com/apachecn/seaborn-doc-zh/issues/1

项目仓库:https://github.com/apachecn/seaborn-doc-zh

认领:6/74,翻译:2/74

序号章节译者进度
1An introduction to seaborn@yiran7324
2Installing and getting started@neolei100%
3Visualizing statistical relationships@JNJYan100%
4Plotting with categorical data@hold2010
5Visualizing the distribution of a dataset@alohahahaha
6Visualizing linear relationships
7Building structured multi-plot grids@keyianpai
8Controlling figure aesthetics
9Choosing color palettes
10seaborn.relplot
11seaborn.scatterplot
12seaborn.lineplot
13seaborn.catplot
14seaborn.stripplot
15seaborn.swarmplot
16seaborn.boxplot
17seaborn.violinplot
18seaborn.boxenplot
19seaborn.pointplot
20seaborn.barplot
21seaborn.countplot
22seaborn.jointplot
23seaborn.pairplot
24seaborn.distplot
25seaborn.kdeplot
26seaborn.rugplot
27seaborn.lmplot
28seaborn.regplot
29seaborn.residplot
30seaborn.heatmap
31seaborn.clustermap
32seaborn.FacetGrid
33seaborn.FacetGrid.map
34seaborn.FacetGrid.map_dataframe
35seaborn.PairGrid
36seaborn.PairGrid.map
37seaborn.PairGrid.map_diag
38seaborn.PairGrid.map_offdiag
39seaborn.PairGrid.map_lower
40seaborn.PairGrid.map_upper
41seaborn.JointGrid
42seaborn.JointGrid.plot
43seaborn.JointGrid.plot_joint
44seaborn.JointGrid.plot_marginals
45seaborn.set
46seaborn.axes_style
47seaborn.set_style
48seaborn.plotting_context
49seaborn.set_context
50seaborn.set_color_codes
51seaborn.reset_defaults
52seaborn.reset_orig
53seaborn.set_palette
54seaborn.color_palette
55seaborn.husl_palette
56seaborn.hls_palette
57seaborn.cubehelix_palette
58seaborn.dark_palette
59seaborn.light_palette
60seaborn.diverging_palette
61seaborn.blend_palette
62seaborn.xkcd_palette
63seaborn.crayon_palette
64seaborn.mpl_palette
65seaborn.choose_colorbrewer_palette
66seaborn.choose_cubehelix_palette
67seaborn.choose_light_palette
68seaborn.choose_dark_palette
69seaborn.choose_diverging_palette
70seaborn.load_dataset
71seaborn.despine
72seaborn.desaturate
73seaborn.saturate
74seaborn.set_hls_values

HBase 3.0 中文参考指南

参与方式:https://github.com/apachecn/hbase-doc-zh/blob/master/CONTRIBUTING.md

整体进度:https://github.com/apachecn/hbase-doc-zh/issues/1

项目仓库:https://github.com/apachecn/hbase-doc-zh

认领:18/31,翻译:11/31

章节译者进度
Preface@xixici100%
Getting Started@xixici100%
Apache HBase Configuration@xixici100%
Upgrading@xixici100%
The Apache HBase Shell@xixici100%
Data Model@Winchester-Yi
HBase and Schema Design@RaymondCode100%
RegionServer Sizing Rules of Thumb
HBase and MapReduce@BridgetLai100%
Securing Apache HBase
Architecture@RaymondCode
In-memory Compaction@mychaow
Backup and Restore@mychaow
Synchronous Replication@mychaow
Apache HBase APIs@xixici100%
Apache HBase External APIs@xixici100%
Thrift API and Filter Language@xixici100%
HBase and Spark@TsingJyujing100%
Apache HBase Coprocessors@TsingJyujing
Apache HBase Performance Tuning
Troubleshooting and Debugging Apache HBase
Apache HBase Case Studies
Apache HBase Operational Management
Building and Developing Apache HBase
Unit Testing HBase Applications
Protobuf in HBase@TsingJyujing
Procedure Framework (Pv2): HBASE-12439
AMv2 Description for Devs
ZooKeeper
Community
Appendix

PyTorch 1.0 中文文档

参与方式:https://github.com/apachecn/pytorch-doc-zh/blob/master/CONTRIBUTING.md

整体进度:https://github.com/apachecn/pytorch-doc-zh/issues/274

项目仓库:https://github.com/apachecn/pytorch-doc-zh

教程部分:认领:37/37,翻译:34/37;文档部分:认领:37/39,翻译:34/39

章节贡献者进度
教程部分--
Deep Learning with PyTorch: A 60 Minute Blitz@bat67100%
What is PyTorch?@bat67100%
Autograd: Automatic Differentiation@bat67100%
Neural Networks@bat67100%
Training a Classifier@bat67100%
Optional: Data Parallelism@bat67100%
Data Loading and Processing Tutorial@yportne13100%
Learning PyTorch with Examples@bat67100%
Transfer Learning Tutorial@jiangzhonglian100%
Deploying a Seq2Seq Model with the Hybrid Frontend@cangyunye100%
Saving and Loading Models@bruce1408100%
What is torch.nn really?@lhc741100%
Finetuning Torchvision Models@ZHHAYO100%
Spatial Transformer Networks Tutorial@PEGASUS1993100%
Neural Transfer Using PyTorch@bdqfork100%
Adversarial Example Generation@cangyunye100%
Transfering a Model from PyTorch to Caffe2 and Mobile using ONNX@PEGASUS1993100%
Chatbot Tutorial@a625687551100%
Generating Names with a Character-Level RNN@hhxx2015100%
Classifying Names with a Character-Level RNN@hhxx2015100%
Deep Learning for NLP with Pytorch@bruce1408100%
Introduction to PyTorch@guobaoyo100%
Deep Learning with PyTorch@bdqfork100%
Word Embeddings: Encoding Lexical Semantics@sight007100%
Sequence Models and Long-Short Term Memory Networks@ETCartman100%
Advanced: Making Dynamic Decisions and the Bi-LSTM CRF@JohnJiangLA
Translation with a Sequence to Sequence Network and Attention@mengfu188100%
DCGAN Tutorial@wangshuai9517100%
Reinforcement Learning (DQN) Tutorial@friedhelm739100%
Creating Extensions Using numpy and scipy@cangyunye100%
Custom C++ and CUDA Extensions@Lotayou
Extending TorchScript with Custom C++ Operators@cloudyyyyy
Writing Distributed Applications with PyTorch@firdameng100%
PyTorch 1.0 Distributed Trainer with Amazon AWS@yportne13100%
ONNX Live Tutorial@PEGASUS1993100%
Loading a PyTorch Model in C++@talengu100%
Using the PyTorch C++ Frontend@solerji100%
文档部分--
Autograd mechanics@PEGASUS1993100%
Broadcasting semantics@PEGASUS1993100%
CUDA semantics@jiangzhonglian100%
Extending PyTorch@PEGASUS1993100%
Frequently Asked Questions@PEGASUS1993100%
Multiprocessing best practices@cvley100%
Reproducibility@WyattHuang1
Serialization semantics@yuange250100%
Windows FAQ@PEGASUS1993100%
torch
torch.Tensor@hijkzzz100%
Tensor Attributes@yuange250100%
Type Info@PEGASUS1993100%
torch.sparse@hijkzzz100%
torch.cuda@bdqfork100%
torch.Storage@yuange250100%
torch.nn@yuange250
torch.nn.functional@hijkzzz100%
torch.nn.init@GeneZC100%
torch.optim@qiaokuoyuan
Automatic differentiation package - torch.autograd@gfjiangly100%
Distributed communication package - torch.distributed@univeryinli100%
Probability distributions - torch.distributions@hijkzzz100%
Torch Script@keyianpai100%
Multiprocessing package - torch.multiprocessing@hijkzzz100%
torch.utils.bottleneck@belonHan100%
torch.utils.checkpoint@belonHan100%
torch.utils.cpp_extension@belonHan100%
torch.utils.data@BXuan694100%
torch.utils.dlpack@kunwuz100%
torch.hub@kunwuz100%
torch.utils.model_zoo@BXuan694100%
torch.onnx@guobaoyo100%
Distributed communication package (deprecated) - torch.distributed.deprecated
torchvision Reference@BXuan694100%
torchvision.datasets@BXuan694100%
torchvision.models@BXuan694100%
torchvision.transforms@BXuan694100%
torchvision.utils@BXuan694100%

AirFlow 中文文档

参与方式:https://github.com/apachecn/airflow-doc-zh/blob/master/CONTRIBUTING.md

整体进度:https://github.com/apachecn/airflow-doc-zh/issues/1

项目仓库:https://github.com/apachecn/airflow-doc-zh

认领:25/30,翻译:24/30

章节贡献者进度
1 项目@zhongjiajie100%
2 协议-100%
3 快速开始@ImPerat0R_100%
4 安装@Thinking Chen100%
5 教程@ImPerat0R_100%
6 操作指南@ImPerat0R_100%
7 设置配置选项@ImPerat0R_100%
8 初始化数据库后端@ImPerat0R_100%
9 使用操作器@ImPerat0R_100%
10 管理连接@ImPerat0R_100%
11 保护连接@ImPerat0R_100%
12 写日志@ImPerat0R_100%
13 使用Celery扩大规模@ImPerat0R_100%
14 使用Dask扩展@ImPerat0R_100%
15 使用Mesos扩展(社区贡献)@ImPerat0R_100%
16 使用systemd运行Airflow@ImPerat0R_100%
17 使用upstart运行Airflow@ImPerat0R_100%
18 使用测试模式配置@ImPerat0R_100%
19 UI /截图@ImPerat0R_100%
20 概念@ImPerat0R_100%
21 数据分析@ImPerat0R_100%
22 命令行接口@ImPerat0R_100%
23 调度和触发器@Ray100%
24 插件@ImPerat0R_100%
25 安全
26 时区
27 实验性 Rest API@ImPerat0R_100%
28 集成
29 Lineage
30 常见问题@zhongjiajie
31 API 参考

UCB CS61b:Java 中的数据结构

参与方式:https://github.com/apachecn/cs61b-textbook-zh/blob/master/CONTRIBUTING.md

整体进度:https://github.com/apachecn/cs61b-textbook-zh/issues/1

项目仓库:https://github.com/apachecn/cs61b-textbook-zh

认领:5/12,翻译:1/12

标题译者进度
一、算法复杂度@leader402
二、抽象数据类型@Allenyep100%
三、满足规范
四、序列和它们的实现@biubiubiuboomboomboom
五、树@biubiubiuboomboomboom
六、搜索树
七、哈希
八、排序和选择@Rachel-Hu
九、平衡搜索
十、并发和同步
十一、伪随机序列
十二、图

UCB Prob140:面向数据科学的概率论

参与方式:https://github.com/apachecn/prob140-textbook-zh/blob/master/CONTRIBUTING.md

整体进度:https://github.com/apachecn/prob140-textbook-zh/issues/2

项目仓库:https://github.com/apachecn/prob140-textbook-zh

认领:21/25,翻译:19/25

标题译者翻译进度
一、基础飞龙100%
二、计算几率飞龙100%
三、随机变量飞龙100%
四、事件之间的关系@biubiubiuboomboomboom100%
五、事件集合>0%
六、随机计数@viviwong100%
七、泊松化@YAOYI626100%
八、期望50%
九、条件(续)@YAOYI626100%
十、马尔科夫链喵十八100%
十一、马尔科夫链(续)喵十八100%
十二、标准差缺只萨摩100%
十三、方差和协方差缺只萨摩100%
十四、中心极限定理喵十八100%
十五、连续分布@ThunderboltSmile
十六、变换
十七、联合密度@Winchester-Yi100%
十八、正态和 Gamma 族@Winchester-Yi100%
十九、和的分布平淡的天100%
二十、估计方法平淡的天100%
二十一、Beta 和二项@lvzhetx100%
二十二、预测50%
二十三、联合正态随机变量@JUNE951234
二十四、简单线性回归@ThomasCai100%
二十五、多元回归@lanhaixuan100%

OpenCV 4.0 中文文档

参与方式:https://github.com/apachecn/opencv-doc-zh/blob/master/CONTRIBUTING.md

整体进度:https://github.com/apachecn/opencv-doc-zh/issues/1

项目仓库:https://github.com/apachecn/opencv-doc-zh

认领:51/51,翻译:19/51。

章节贡献者进度
1. 简介@wstone0011
1.1 OpenCV-Python教程简介-100%
1.2 安装OpenCV—Python-100%
2. GUI功能@ranxx
2.1 图像入门-100%
2.2 视频入门-100%
2.3 绘图功能-100%
2.4 鼠标作为画笔-100%
2.5 作为调色板的跟踪栏-100%
3. 核心操作@luxinfeng
3.1 图像基本操作-100%
3.2 图像的算术运算-100%
3.3 性能测量和改进技术-100%
4. 图像处理@friedhelm739
4.1 更改颜色空间-100%
4.2 图像的几何变换-100%
4.3 图像阈值-100%
4.4 平滑图像-
4.5 形态转换-
4.6 图像梯度-
4.7 Canny边缘检测-
4.8 影像金字塔-
4.9 轮廓-
4.10 直方图-
4.11 图像转换-
4.12 模板匹配-
4.13 霍夫线变换-
4.14 霍夫圆变换-
4.15 基于分水岭算法的图像分割-
基于GrabCut算法的交互式前景提取-
5. 特征检测和描述@3lackrush
5.1 了解功能-100%
5.2 Harris角点检测-
5.3 Shi-Tomasi角点检测和追踪的良好特征-
5.4 SIFT简介(尺度不变特征变换)-
5.5 SURF简介(加速鲁棒特性)-
5.6 角点检测的FAST算法-
5.7 简介(二进制鲁棒独立基本特征)-
5.8 ORB(定向快速和快速旋转)-
5.9 特征匹配-
5.10 特征匹配+ Homography查找对象-
6. 视频分析@xmmmmmovo
6.1 Meanshift和Camshift-100%
6.2 光流-100%
6.3 背景减法-100%
7. 相机校准和3D重建@xmmmmmovo
7.1 相机校准-
7.2 姿势估计-
7.3 极线几何-
7.4 立体图像的深度图-
8. 机器学习@wstone0011
8.1 K-最近邻-
8.2 支持向量机(SVM)-
8.3 K-Means聚类-
9. 计算摄影@ranxx
9.1 图像去噪-
9.2 图像修复-
9.3 高动态范围(HDR)-
10. 目标检测@jiangzhonglian
10.1 使用Haar Cascades进行人脸检测-100%
11. OpenCV-Python绑定@daidai21
11.1 OpenCV-Python绑定如何工作?-100%

翻译征集

要求:

  • 机器学习/数据科学相关
  • 或者编程相关
  • 原文必须在互联网上开放
  • 不能只提供 PDF 格式(我们实在不想把精力都花在排版上)
  • 请先搜索有没有人翻译过

请回复本文

赞助我们

posted @ 2019-06-12 15:12  绝不原创的飞龙  阅读(6)  评论(0编辑  收藏  举报  来源