重新整理数据结构与算法(c#)—— 线索化二叉树[二十]

前言

为什么会有线索化二叉树呢?

是这样子的,二叉树呢,比如有n个节点,那么就有n+1个空指针域。

这个是怎么来的呢?比如我们假如一个节点都有左子树和右子树,那么就有2n个节点。

但是我们发现连接我们节点的一共有n-1个(要把n个节点串起来),那么就等于2n-(n-1)=n+1。

那么如何利用这些空间?

假如中序遍历如下:

{8,3,10,1,6,14}

那么如果3的右节点为空,就指向它的后驱节点,也就是10。

如果3的左节点为空,那么就指向它的前驱节点,也就是8。

以此类推,8的前驱节点为空,如果左节点为空,那么就是空。

职业盗图:

正文

创建节点模型:

public class ThreadedHeroNode
{
	private int no;

	private string name;

	private ThreadedHeroNode left;

	private ThreadedHeroNode right;
	//0 表示左子树,1表示后继节点
	private int leftType;
	//0 表示右子树,1表示后继节点
	private int rightType;

	public int getLeftType()
	{
		return leftType;
	}

	public void setLeftType(int leftType)
	{
		this.leftType = leftType;
	}

	public int getRightType()
	{
		return rightType;
	}

	public void setRightType(int rightType)
	{
		this.rightType = rightType;
	}

	public ThreadedHeroNode(int no, string name)
	{
		this.no = no;
		this.name = name;
	}

	public int getNo()
	{
		return no;
	}
	public void setNo(int no)
	{
		this.no = no;
	}

	public String getName()
	{
		return name;
	}
	public void setName(String name)
	{
		this.name = name;
	}
	public ThreadedHeroNode getLeft()
	{
		return left;
	}
	public void setLeft(ThreadedHeroNode left)
	{
		this.left = left;
	}
	public ThreadedHeroNode getRight()
	{
		return right;
	}
	public void setRight(ThreadedHeroNode right)
	{
		this.right = right;
	}
	public override string ToString()
	{
		return "姓名:" + name + "编号:" + no;
	}

	public void record()
	{
		Console.WriteLine("查找步骤为:名字" + this.name + " 编号:" + this.no);
	}
}

创建树模型:

public class ThreadedBinaryTree
{
	private ThreadedHeroNode root;

	private ThreadedHeroNode pre;

	public void setRoot(ThreadedHeroNode root)
	{
		this.root = root;
	}

	//中序遍历线索化二叉树
	public void threadedList()
	{
		ThreadedHeroNode node = root;
		while (node!=null)
		{
			//判断是否是
			while (node.getLeftType() == 0)
			{
				node = node.getLeft();
			}
			Console.WriteLine(node);
			while (node.getRightType() == 1)
			{
				node = node.getRight();
				Console.WriteLine(node);
			}
			node=node.getRight();
		}
	}

	public void threadedNodes()
	{
		threadedNodes(root);
	}

	public void threadedNodes(ThreadedHeroNode node)
	{
		if (node == null)
		{
			return;
		}
		//线索化左子树
		threadedNodes(node.getLeft());
		if (node.getLeft() == null)
		{
			node.setLeft(pre);
			node.setLeftType(1);
		}
		if (pre != null&& pre.getRight() == null)
		{
			pre.setRight(node);
			pre.setRightType(1);
		}
		pre = node;
		//线索化右子树
		threadedNodes(node.getRight());
	}
}

测试:

static void Main(string[] args)
{
	//测试一把中序线索二叉树的功能
	ThreadedHeroNode root = new ThreadedHeroNode(1, "tom");
	ThreadedHeroNode node2 = new ThreadedHeroNode(3, "jack");
	ThreadedHeroNode node3 = new ThreadedHeroNode(6, "smith");
	ThreadedHeroNode node4 = new ThreadedHeroNode(8, "mary");
	ThreadedHeroNode node5 = new ThreadedHeroNode(10, "king");
	ThreadedHeroNode node6 = new ThreadedHeroNode(14, "dim");

	//二叉树,后面我们要递归创建, 现在简单处理使用手动创建
	root.setLeft(node2);
	root.setRight(node3);
	node2.setLeft(node4);
	node2.setRight(node5);
	node3.setLeft(node6);

	//测试中序线索化
	ThreadedBinaryTree threadedBinaryTree = new ThreadedBinaryTree();
	threadedBinaryTree.setRoot(root);
	threadedBinaryTree.threadedNodes();
	//当线索化二叉树后,能在使用原来的遍历方法
	Console.WriteLine("使用线索化的方式遍历 线索化二叉树");
	threadedBinaryTree.threadedList(); // 8, 3, 10, 1, 14, 6
	Console.ReadKey();
}

测试结果:

posted @ 2020-07-09 09:56  敖毛毛  阅读(200)  评论(0编辑  收藏  举报