虚拟机垃圾回收判定
- 引用计数法
- 可达性分析算法
引用计数算法(Reference Counting)在对象中添加一个引用计数器,每当有一个地方引用它时,计数器值就加一;当引用失效时,计数器值就减一;任何时刻计数器为零的对象就是不可能再被使用的。虽然占用了一些额外的内存空间来进行计数,但它的原理简单,判定效率也很高,在大多数情况下它都是一个不错的算法。但是,在Java 领域,至少主流的Java虚拟机里面都没有选用引用计数算法来管理内存,主要原因是,这个看似简单的算法有很多例外情况要考虑,必须要配合大量额外处理才能保证正确地工作,譬如单纯的引用计数就很难解决对象之间相互循环引用的问题。
可达性分析算法,这个算法的基本思路就是通过 一系列称为“GC Roots”的根对象作为起始节点集,从这些节点开始,根据引用关系向下搜索,搜索过 程所走过的路径称为“引用链”(Reference Chain),如果某个对象到GC Roots间没有任何引用链相连, 或者用图论的话来说就是从GC Roots到这个对象不可达时,则证明此对象是不可能再被使用的。
在Java技术体系里面,固定可作为GC Roots的对象包括以下几种:
- 在虚拟机栈(栈帧中的本地变量表)中引用的对象,譬如各个线程被调用的方法堆栈中使用到的参数、局部变量、临时变量等。
- 在方法区中类静态属性引用的对象,譬如Java类的引用类型静态变量。
- 在方法区中常量引用的对象,譬如字符串常量池(String Table)里的引用。
- 在本地方法栈中JNI(即通常所说的Native方法)引用的对象。
- Java虚拟机内部的引用,如基本数据类型对应的Class对象,一些常驻的异常对象(比如NullPointExcepiton、OutOfMemoryError)等,还有系统类加载器。
- 所有被同步锁(synchronized关键字)持有的对象。
- 反映Java虚拟机内部情况的JM XBean、JVM TI中注册的回调、本地代码缓存等。
除了这些固定的GC Roots集合以外,根据用户所选用的垃圾收集器以及当前回收的内存区域不同,还可以有其他对象“临时性”地加入,共同构成完整GC Roots集合。譬如,分代回收或者局部回收下,某个区域里的对象完全有可能被位于堆中其他区域的对象所引用,这时候就需要将这些关联区域的对象也一并加入GC Roots集合中去,才能保证可达性分析的正确性。
引用类型
无论是通过引用计数算法判断对象的引用数量,还是通过可达性分析算法判断对象是否引用链可 达,判定对象是否存活都和“引用”离不开关系。
Java将引用分为强引用(Strongly Reference)、软引用(Soft Reference)、弱引用(Weak Reference)和虚引用(Phantom Reference)4种,这4种引用强度依次逐渐减弱。
- 强引用是最传统的“引用”的定义,是指在程序代码之中普遍存在的引用赋值,即类似“Object obj=new Object()”这种引用关系。无论任何情况下,只要强引用关系还存在,垃圾收集器就永远不会回收掉被引用的对象。
- 软引用是用来描述一些还有用,但非必须的对象。只被软引用关联着的对象,在系统将要发生内 存溢出异常前,会把这些对象列进回收范围之中进行第二次回收,如果这次回收还没有足够的内存, 才会抛出内存溢出异常。在JDK 1.2版之后提供了SoftReference类来实现软引用。
- 弱引用也是用来描述那些非必须对象,但是它的强度比软引用更弱一些,被弱引用关联的对象只 能生存到下一次垃圾收集发生为止。当垃圾收集器开始工作,无论当前内存是否足够,都会回收掉只 被弱引用关联的对象。在JDK 1.2版之后提供了WeakReference类来实现弱引用。
- 虚引用也称为“幽灵引用”或者“幻影引用”,它是最弱的一种引用关系。一个对象是否有虚引用的 存在,完全不会对其生存时间构成影响,也无法通过虚引用来取得一个对象实例。为一个对象设置虚 引用关联的唯一目的只是为了能在这个对象被收集器回收时收到一个系统通知。在JDK 1.2版之后提供 了Phant omReference类来实现虚引用。
可回收判断
如果对象在进行可达性分析后发现没有与GC Roots相连接的引用链,并不会立马判定为可回收。首先要盘判断该对象是否有必要执行finalize方法。finalize方法没有被覆盖或者已经被虚拟机调用,虚拟机判定为没必要执行。如果这个对象被判定为确有必要执行finalize()方法,那么该对象将会被放置在一个名为F-Queue的 队列之中,并在稍后由一条由虚拟机自动建立的、低调度优先级的Finalizer线程去执行它们的finalize() 方法。这里所说的“执行”是指虚拟机会触发这个方法开始运行,但并不承诺一定会等待它运行结束。 这样做的原因是,如果某个对象的finalize()方法执行缓慢,或者更极端地发生了死循环,将很可能导致F-Queue队列中的其他对象永久处于等待,甚至导致整个内存回收子系统的崩溃。finalize()方法是对象逃脱死亡命运的最后一次机会,稍后收集器将对F-Queue中的对象进行一次小规模的排查,如果对象要在finalize()中成功拯救自己——只要重新与引用链上的任何一个对象建立关联即可,譬如把自己 (this关键字)赋值给某个类变量或者对象的成员变量,那在第二次标记时它将被移出“即将回收”的集合;如果对象这时候还没有逃脱,那基本上它就真的要被回收了。自救的机会只有一次,因为一个对象的finalize()方法最多只会被系统自动调用一次,所以下一次失去可达性后,他就没得自救了。
注意:不建议使用finalize来拯救对象。运行代价高昂,不确定性大,无法保证各个对象的调用顺序,如今已被官方明确声明为 不推荐使用的语法。finalize()能做的所有工作,使用try -finally 或者其他方式都可以做得更好、 更及时。
方法区是否有垃圾回收
大多都有,也有没有的,比如JDK 11时期的ZGC收集器就不支持类卸载。
方法区的垃圾收集主要回收两部分内容:废弃的常量和不再使用的类型。
废弃的常量:已经没有任何对象引用常量池中的常量,且虚拟机中也没有其他地方引用这个字面量。如果在这时发生内存回收,而且垃圾收集器判断确有必要的话,这个常量就将会被系统清理出常量池。常量池中的类(接口)、方法、字段的符号引用也是如此。
不再使用的类型:判定一个常量是否“废弃”还是相对简单,而要判定一个类型是否属于“不再被使用的类”的条件就 比较苛刻了。需要同时满足下面三个条件,
- 该类所有的实例都已经被回收,也就是Java堆中不存在该类及其任何派生子类的实例。
- 加载该类的类加载器已经被回收,这个条件除非是经过精心设计的可替换类加载器的场景,如OSGi、JSP的重加载等,否则通常是很难达成的。
- 该类对应的java.lang.Class对象没有在任何地方被引用,无法在任何地方通过反射访问该类的方法。