椭圆曲线加密

椭圆曲线加密

闲来无事,发现xctf网站更新了一个攻防世界的栏目,里边有很多ctf练习题,其中一个为椭圆曲线加密,原理上课老师都没讲。。。

题目:easy_ECC
题目来源: XUSTCTF2016
题目描述:转眼两个人又走到了下一个谜题的地方,这又是一种经典的密码学加密方式 而你刚好没有这个的工具,你对小鱼说“小鱼我知道数学真的很重要了,有了工具只是方便我们使用 懂了原理才能做到,小鱼你教我一下这个缇努怎么做吧!”在小鱼的一步步带领下,你终于明白了ECC 的基本原理,成功的解开了这个题目,两个人相视一笑,快步走向了下一个题目所在的位置。flag格式为cyberpeace{x+y的值}
已知椭圆曲线加密Ep(a,b)参数为

p = 15424654874903

a = 16546484

b = 4548674875

G(6478678675,5636379357093)

私钥为

k = 546768

求公钥K(x,y)

网上百度大神代码(有时间好好研究一下):

import collections
import random
EllipticCurve = collections.namedtuple('EllipticCurve', 'name p a b g n h')
curve = EllipticCurve(
   'secp256k1',
   # Field characteristic.
   p=int(input('p=')),
   # Curve coefficients.
   a=int(input('a=')),
   b=int(input('b=')),
   # Base point.
   g=(int(input('Gx=')),
      int(input('Gy='))),
   # Subgroup order.
   n=int(input('k=')),
   # Subgroup cofactor.
   h=1,
)
# Modular arithmetic ##########################################################
def inverse_mod(k, p):
   """Returns the inverse of k modulo p.
  This function returns the only integer x such that (x * k) % p == 1.
  k must be non-zero and p must be a prime.
  """
   if k == 0:
       raise ZeroDivisionError('division by zero')
   if k < 0:
       # k ** -1 = p - (-k) ** -1 (mod p)
       return p - inverse_mod(-k, p)
   # Extended Euclidean algorithm.
   s, old_s = 0, 1
   t, old_t = 1, 0
   r, old_r = p, k
   while r != 0:
       quotient = old_r // r
       old_r, r = r, old_r - quotient * r
       old_s, s = s, old_s - quotient * s
       old_t, t = t, old_t - quotient * t
   gcd, x, y = old_r, old_s, old_t
   assert gcd == 1
   assert (k * x) % p == 1
   return x % p
# Functions that work on curve points #########################################
def is_on_curve(point):
   """Returns True if the given point lies on the elliptic curve."""
   if point is None:
       # None represents the point at infinity.
       return True
   x, y = point
   return (y * y - x * x * x - curve.a * x - curve.b) % curve.p == 0
def point_neg(point):
   """Returns -point."""
   assert is_on_curve(point)
   if point is None:
       # -0 = 0
       return None
   x, y = point
   result = (x, -y % curve.p)
   assert is_on_curve(result)
   return result
def point_add(point1, point2):
   """Returns the result of point1 + point2 according to the group law."""
   assert is_on_curve(point1)
   assert is_on_curve(point2)
   if point1 is None:
       # 0 + point2 = point2
       return point2
   if point2 is None:
       # point1 + 0 = point1
       return point1
   x1, y1 = point1
   x2, y2 = point2
   if x1 == x2 and y1 != y2:
       # point1 + (-point1) = 0
       return None
   if x1 == x2:
       # This is the case point1 == point2.
       m = (3 * x1 * x1 + curve.a) * inverse_mod(2 * y1, curve.p)
   else:
       # This is the case point1 != point2.
       m = (y1 - y2) * inverse_mod(x1 - x2, curve.p)
   x3 = m * m - x1 - x2
   y3 = y1 + m * (x3 - x1)
   result = (x3 % curve.p,
             -y3 % curve.p)
   assert is_on_curve(result)
   return result
def scalar_mult(k, point):
   """Returns k * point computed using the double and point_add algorithm."""
   assert is_on_curve(point)
   if k < 0:
       # k * point = -k * (-point)
       return scalar_mult(-k, point_neg(point))
   result = None
   addend = point
   while k:
       if k & 1:
           # Add.
           result = point_add(result, addend)
       # Double.
       addend = point_add(addend, addend)
       k >>= 1
   assert is_on_curve(result)
   return result
# Keypair generation and ECDHE ################################################
def make_keypair():
   """Generates a random private-public key pair."""
   private_key = curve.n
   public_key = scalar_mult(private_key, curve.g)
   return private_key, public_key
private_key, public_key = make_keypair()
print("private key:", hex(private_key))
print("public key: (0x{:x}, 0x{:x})".format(*public_key))
posted @ 2019-12-20 10:03  奋斗小菜鸟  阅读(1132)  评论(0编辑  收藏  举报