摘要:
numpy.random.shuffle(x)Modify a sequence in-place by shuffling its contents.Parameters:x: array_likeThe array or list to be shuffled.Returns:NoneExamp... 阅读全文
摘要:
多分类问题 在一个多分类问题中,因变量y有k个取值,即。例如在邮件分类问题中,我们要把邮件分为垃圾邮件、个人邮件、工作邮件3类,目标值y是一个有3个取值的离散值。这是一个多分类问题,二分类模型在这里不太适用。 多分类问题符合多项分布。有许多算法可用于解决多分类问题,像决策树、朴素贝叶斯等。这篇文章主... 阅读全文
摘要:
总结为: 将一组数变换为 总和为1,各个数为0~1之间的软性归一化结果。=========================================================关于logistic regression中的softmax 函数是用来柔化输出值,减小值之间的差。用来归一化一... 阅读全文
摘要:
最大似然法,英文名称是Maximum Likelihood Method,在统计中应用很广。这个方法的思想最早由高斯提出来,后来由菲舍加以推广并命名。最大似然法是要解决这样一个问题:给定一组数据和一个参数待定的模型,如何确定模型的参数,使得这个确定参数后的模型在所有模型中产生已知数据的概率最 大。通... 阅读全文
摘要:
“回归”的由来FrancisGalton,英国生物学家,他研究了父母身高与子女身高之间关系后得出,若父母身高高于平均大众身高,则其子女身高倾向于倒退生长,即会比其父母身高矮一些而更接近于大众平均身高。若父母身高小于平均身高,则其子女身高倾向于向上生长,以更接近于大众平均身高。此现象,被Galton称... 阅读全文
摘要:
一、标准化(Z-Score),或者去除均值和方差缩放公式为:(X-mean)/std 计算时对每个属性/每列分别进行。将数据按期属性(按列进行)减去其均值,并处以其方差。得到的结果是,对于每个属性/每列来说所有数据都聚集在0附近,方差为1。实现时,有两种不同的方式:使用sklearn.preproc... 阅读全文
摘要:
在数理统计学中,似然函数是一种关于统计模型中的参数的函数,表示模型参数中的似然性。似然函数在统计推断中有重大作用,如在最大似然估计和费雪信息之中的应用等等。“似然性”与“或然性”或“概率”意思相近,都是指某种事件发生的可能性,但是在统计学中,“似然性”和“或然性”或“概率”又有明确的区分。概率用于在... 阅读全文
摘要:
前言: 找工作时(IT行业),除了常见的软件开发以外,机器学习岗位也可以当作是一个选择,不少计算机方向的研究生都会接触这个,如果你的研究方向是机器学习/数据挖掘之类,且又对其非常感兴趣的话,可以考虑考虑该岗位,毕竟在机器智能没达到人类水平之前,机器学习可以作为一种重要手段,而随着科技的不断发展,相... 阅读全文
摘要:
好久没有写 blog 了,一来是 blog 下线一段时间,而租 DreamHost 的事情又一直没弄好;二来是没有太多时间,天天都跑去实验室。现在主要折腾 Machine Learning 相关的东西,因为很多东西都不懂,所以平时也找一些资料来看。按照我以前的更新速度的话,这么长时间不写 blog ... 阅读全文
摘要:
本文是“支持向量机系列”的第一篇,参见本系列的其他文章。支持向量机即Support Vector Machine,简称 SVM 。我最开始听说这头机器的名号的时候,一种神秘感就油然而生,似乎把 Support 这么一个具体的动作和 Vector 这么一个抽象的概念拼到一起,然后再做成一个 Machi... 阅读全文