Global average pooling 的合理性在于,经过了一个多层的复杂的网络之后,每一个filter代表的都是high-level的信息,而不是low-level的像一些曲线或者纹理之类的信息。对于这种high-level的信息,对整个feature map做pooling相当于检测这个map中有没有这个filter要检测的concept,这个pooling的结果已经可以很好地用来做分类或者检测之类的工作,不需要fully connected之后再训练分类器。
总结起来,Network in Network 模型相当于一个更多层的cnn,通过多个1*1的卷积,将单个的卷积变得表示能力更强。再结合最后将fully connected替换为average pooling,使得模型的参数大大下降,也避免了overfitting的问题。一个层次更深,但或许参数更少的模型(因为fully connected的参数实在是太多了)。
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· AI与.NET技术实操系列:向量存储与相似性搜索在 .NET 中的实现
· 基于Microsoft.Extensions.AI核心库实现RAG应用
· Linux系列:如何用heaptrack跟踪.NET程序的非托管内存泄露
· 开发者必知的日志记录最佳实践
· SQL Server 2025 AI相关能力初探
· winform 绘制太阳,地球,月球 运作规律
· 震惊!C++程序真的从main开始吗?99%的程序员都答错了
· AI与.NET技术实操系列(五):向量存储与相似性搜索在 .NET 中的实现
· 超详细:普通电脑也行Windows部署deepseek R1训练数据并当服务器共享给他人
· 【硬核科普】Trae如何「偷看」你的代码?零基础破解AI编程运行原理