版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
一个90%的程序员写不对的程序,一个面试高频出现的面试题,一个开发中用之甚广的算法,一个最能体现程序员素质的代码,它就是二分查找。
一、二分查找的定义
【百度百科】二分查找也称折半查找(Binary Search),它是一种效率较高的查找方法。但是,折半查找要求线性表必须采用顺序存储结构,而且表中元素按关键字有序排列。
二分查找法充分利用了元素间的次序关系,采用分治策略,可在最坏的情况下用O(log n)完成搜索任务。它的基本思想是:(这里假设数组元素呈升序排列)将n个元素分成个数大致相同的两半,取a[n/2]与欲查找的x作比较,如果x=a[n/2]则找到x,算法终止;如 果x<a[n/2],则我们只要在数组a的左半部继续搜索x;如果x>a[n/2],则我们只要在数组a的右 半部继续搜索x。
二、二分查找的实现
//二分查找普通实现 public static int binarySearch(Integer[] srcArray, int des) { //定义初始最小、最大索引 int start = 0; int end = srcArray.length - 1; //确保不会出现重复查找,越界 while (start <= end) { //计算出中间索引值 int middle = (end + start)>>>1 ;//防止溢出 if (des == srcArray[middle]) { return middle; //判断下限 } else if (des < srcArray[middle]) { end = middle - 1; //判断上限 } else { start = middle + 1; } } //若没有,则返回-1 return -1; }
/** * 二分查找递归实现。 * @param srcArray 有序数组 * @param start 数组低地址下标 * @param end 数组高地址下标 * @param key 查找元素 * @return 查找元素不存在返回-1 */ public static int binSearch(int srcArray[], int start, int end, int key) { int mid = (end - start) / 2 + start; if (srcArray[mid] == key) { return mid; } if (start >= end) { return -1; } else if (key > srcArray[mid]) { return binSearch(srcArray, mid + 1, end, key); } else if (key < srcArray[mid]) { return binSearch(srcArray, start, mid - 1, key); } return -1; }
三、二分查找的工作原理
- 将数组分成两半,并确定要查找的内容(称为搜索键)是在左半部分还是在右半部分。
- 你如何确定搜索关键字是哪一半?这就是为什么您首先对数组进行排序的原因,以便您可以进行简单
<
或>
比较。 - 如果搜索键位于左半部分,则重复该过程:将左半部分分成两个更小的部分,然后查看搜索键必须位于哪个部分。(同样,当它是右半边时。)
- 这一直重复直到找到搜索关键字。如果阵列无法再分割,您必须遗憾地断定搜索键不在阵列中。
现在你知道它为什么称为“二分”查找:在每一步中,它将数组分成两半。这个分而治之的过程就是让它能够快速缩小搜索关键字的位置。
我的微信公众号:架构真经(id:gentoo666),分享Java干货,高并发编程,热门技术教程,微服务及分布式技术,架构设计,区块链技术,人工智能,大数据,Java面试题,以及前沿热门资讯等。每日更新哦!
参考资料: