多线程相关类的学习

 JAVA5 中锁的概念

java中有三种锁的实现,分别是

ReentrantLock   普通锁

ReentrantReadWriteLock  读写锁

其中读锁和写锁互斥,写锁和写锁互斥,读锁和读锁可以并发。

public class LockTest {
Lock lock = new ReentrantLock();
ReadWriteLock rwlock = new ReentrantReadWriteLock();
// 读取时候上读锁,写的时候上写锁

public void read() {
rwlock.readLock().lock();
// 读取数据的代码,多个读锁不互斥

//
rwlock.readLock().unlock();
}

public void write(int i) {
rwlock.writeLock().lock();
// 修改数据是上写锁,写锁之间互斥,写锁和读锁互斥。
rwlock.writeLock().unlock();

}

 

//Condition 实现类似的缓冲队列

class BoundedBuffer {
   final Lock lock = new ReentrantLock();
   final Condition notFull  = lock.newCondition(); 
   final Condition notEmpty = lock.newCondition(); 

   final Object[] items = new Object[100];
   int putptr, takeptr, count;

   public void put(Object x) throws InterruptedException {
     lock.lock();
     try {
       while (count == items.length) 
         notFull.await();
       items[putptr] = x; 
       if (++putptr == items.length) putptr = 0;
       ++count;
       notEmpty.signal();
     } finally {
       lock.unlock();
     }
   }

   public Object take() throws InterruptedException {
     lock.lock();
     try {
       while (count == 0) 
         notEmpty.await();
       Object x = items[takeptr]; 
       if (++takeptr == items.length) takeptr = 0;
       --count;
       notFull.signal();
       return x;
     } finally {
       lock.unlock();
     }
   } 
 }



java里的信号量的概念: Seamphore类的实用案例


    public static void main(String[] args) {
          ExecutorService service = Executors.newCachedThreadPool();
          //final Semaphore sp = new Semaphore(3);
          final Semphore sp =new Semaphore(3);

            for(int i=0;i<10;i++){
              Runnable runnable = new Runnable(){
                public void run(){
            try {
              sp.acquire();

                } catch (InterruptedException e1) {
                e1.printStackTrace();
              }
              System.out.println("线程" + Thread.currentThread().getName() +
              "进入,当前已有" + (3-sp.availablePermits()) + "个并发");
              try {
                  Thread.sleep((long)(Math.random()*10000));
                   } catch (InterruptedException e) {
                e.printStackTrace();
                      }
              System.out.println("线程" + Thread.currentThread().getName() +
                "即将离开");
                sp.release();
//下面代码有时候执行不准确,因为其没有和上面的代码合成原子单元
          System.out.println("线程" + Thread.currentThread().getName() +
            "已离开,当前已有" + (3-sp.availablePermits()) + "个并发");
              }
                };
            service.execute(runnable);
              }
            }

//jdk 官方案例

一个计数信号量。从概念上讲,信号量维护了一个许可集。如有必要,在许可可用前会阻塞每一个 acquire(),然后再获取该许可。每个 release() 添加一个许可,从而可能释放一个正在阻塞的获取者。但是,不使用实际的许可对象,Semaphore 只对可用许可的号码进行计数,并采取相应的行动。

Semaphore 通常用于限制可以访问某些资源(物理或逻辑的)的线程数目。例如,下面的类使用信号量控制对内容池的访问:

 class Pool {
   private static final int MAX_AVAILABLE = 100;
   private final Semaphore available = new Semaphore(MAX_AVAILABLE, true);

   public Object getItem() throws InterruptedException {
     available.acquire();
     return getNextAvailableItem();
   }

   public void putItem(Object x) {
     if (markAsUnused(x))
       available.release();
   }

   // Not a particularly efficient data structure; just for demo

   protected Object[] items = ... whatever kinds of items being managed
   protected boolean[] used = new boolean[MAX_AVAILABLE];

   protected synchronized Object getNextAvailableItem() {
     for (int i = 0; i < MAX_AVAILABLE; ++i) {
       if (!used[i]) {
          used[i] = true;
          return items[i];
       }
     }
     return null; // not reached
   }

   protected synchronized boolean markAsUnused(Object item) {
     for (int i = 0; i < MAX_AVAILABLE; ++i) {
       if (item == items[i]) {
          if (used[i]) {
            used[i] = false;
            return true;
          } else
            return false;
       }
     }
     return false;
   }

 }
 

获得一项前,每个线程必须从信号量获取许可,从而保证可以使用该项。该线程结束后,将项返回到池中并将许可返回到该信号量,从而允许其他线程获取该项。注意,调用 acquire() 时无法保持同步锁,因为这会阻止将项返回到池中。信号量封装所需的同步,以限制对池的访问,这同维持该池本身一致性所需的同步是分开的。

将信号量初始化为 1,使得它在使用时最多只有一个可用的许可,从而可用作一个相互排斥的锁。这通常也称为二进制信号量,因为它只能有两种状态:一个可用的许可,或零个可用的许可。按此方式使用时,二进制信号量具有某种属性(与很多 Lock 实现不同),即可以由线程释放“锁”,而不是由所有者(因为信号量没有所有权的概念)。在某些专门的上下文(如死锁恢复)中这会很有用。

此类的构造方法可选地接受一个公平 参数。当设置为 false 时,此类不对线程获取许可的顺序做任何保证。特别地,闯入 是允许的,也就是说可以在已经等待的线程前为调用 acquire() 的线程分配一个许可,从逻辑上说,就是新线程将自己置于等待线程队列的头部。当公平设置为 true 时,信号量保证对于任何调用获取方法的线程而言,都按照处理它们调用这些方法的顺序(即先进先出;FIFO)来选择线程、获得许可。注意,FIFO 排序必然应用到这些方法内的指定内部执行点。所以,可能某个线程先于另一个线程调用了 acquire,但是却在该线程之后到达排序点,并且从方法返回时也类似。还要注意,非同步的 tryAcquire 方法不使用公平设置,而是使用任意可用的许可。

通常,应该将用于控制资源访问的信号量初始化为公平的,以确保所有线程都可访问资源。为其他的种类的同步控制使用信号量时,非公平排序的吞吐量优势通常要比公平考虑更为重要。

此类还提供便捷的方法来同时 acquire释放多个许可。小心,在未将公平设置为 true 时使用这些方法会增加不确定延期的风险。 

 

 CyclicBarrier 类的实用 :

 

ExecutorService service = Executors.newCachedThreadPool();
final CyclicBarrier cb = new CyclicBarrier(3);

 

for(int i=0;i<3;i++){
Runnable runnable = new Runnable(){
public void run(){
try {
Thread.sleep((long)(Math.random()*10000));
System.out.println("线程" + Thread.currentThread().getName() +
"即将到达集合地点1,当前已有" + (cb.getNumberWaiting()+1) + "个已经到达," + (cb.getNumberWaiting()==2?"都到齐了,继续走啊":"正在等候"));
cb.await();

Thread.sleep((long)(Math.random()*10000));
System.out.println("线程" + Thread.currentThread().getName() +
"即将到达集合地点2,当前已有" + (cb.getNumberWaiting()+1) + "个已经到达," + (cb.getNumberWaiting()==2?"都到齐了,继续走啊":"正在等候"));
cb.await();
Thread.sleep((long)(Math.random()*10000));
System.out.println("线程" + Thread.currentThread().getName() +
"即将到达集合地点3,当前已有" + (cb.getNumberWaiting() + 1) + "个已经到达," + (cb.getNumberWaiting()==2?"都到齐了,继续走啊":"正在等候"));
cb.await();
} catch (Exception e) {
e.printStackTrace();
}
}
};
service.execute(runnable);
}
service.shutdown();
}
}

 

 






 

posted @ 2017-05-23 13:29  暗夜飞羽睿  阅读(93)  评论(0编辑  收藏  举报