Spark Partition
分区的意义
Spark RDD 是一种分布式的数据集,由于数据量很大,因此它被切分成不同分区并存储在各个Worker节点的内存中。从而当我们对RDD进行操作时,实际上是对每个分区中的数据并行操作。Spark根据字段进行partition类似于关系型数据库中的分区,可以加大并行度,提高执行效率。Spark从HDFS读入文件的分区数默认等于HDFS文件的块数(blocks),HDFS中的block是分布式存储的最小单元。
1. RDD repartition和partitionBy的区别
spark中RDD两个常用的重分区算子,repartition 和 partitionBy 都是对数据进行重新分区,默认都是使用 HashPartitioner,区别在于partitionBy 只能用于 PairRdd(key-value类型的数据),但是当它们同时都用于 PairRdd时,效果也是不一样的。reparation的分区比较的随意,没有什么规律,而partitionBy把相同的key都分到了同一个分区。
val parRDD = pairRDD.repartition(10) //重分区为10;
val parRDD = pairRDD.partitionBy(new HashPartitioner(10)) //重分区为10;

import org.apache.log4j.{Level, Logger} import org.apache.spark.{HashPartitioner, SparkConf, SparkContext, TaskContext} import org.apache.spark.rdd.RDD object PartitionDemo { Logger.getLogger("org.apache.spark").setLevel(Level.ERROR) def main(args: Array[String]): Unit = { val conf = new SparkConf().setAppName("localTest").setMaster("local[4]") val sc = new SparkContext(conf) val rdd = sc.parallelize(List("hello", "jason", "what", "are", "you", "doing","hi","jason","do","you","eat","dinner", "hello","jason","do","you","have","some","time","hello","jason","time","do","you","jason","jason"),4) //设置4个分区; val word_count = rdd.flatMap(_.split(",")).map((_,1)) val repar = word_count.repartition(10) //重分区为10; val parby = word_count.partitionBy(new HashPartitioner(10)) //重分区为10; print(repar) print(parby) } def print(rdd : RDD[(String, Int)]) = { rdd.foreachPartition(pair=>{ println("partion " + TaskContext.get.partitionId + ":") pair.foreach(p=>{ println(" " + p) }) }) println } }
partitionBy的三种分区方式:
1、HashPartitioner
val parRDD= pairRDD.partitionBy(new HashPartitioner(3))
HashPartitioner确定分区的方式:partition = key.hashCode () % numPartitions
2、RangePartitioner
val parRDD= pairRDD.partitionBy(new RangePartitioner(3,counts))
RangePartitioner会对key值进行排序,然后将key值被划分成3份key值集合。
3、CustomPartitioner
CustomPartitioner可以根据自己具体的应用需求,自定义分区。
class CustomPartitioner(numParts: Int) extends Partitioner { override def numPartitions: Int = numParts override def getPartition(key: Any): Int = { if(key==1)){ 0 } else if (key==2){ 1} else{ 2 } } } val parRDD = pairRDD.partitionBy(new CustomPartitioner(3))
2. DataFrame分区
1. repartition:根据字段分区
val regionDf = peopleDf.repartition($"region")
2. coalesce: coalesce一般用于合并/减少分区,将数据从一个分区移到另一个分区。
val peopleDF2= peopleDF.coalesce(2) // 原来分区为4,减少到2, 无法增加分区数,例如peopleDF.coalesce(6)执行完分区还是4
二者区别:The repartition algorithm does a full shuffle of the data and creates equal sized partitions of data. coalesce combines existing partitions to avoid a full shuffle.
为什么使用repartition而不用coalesce? A full data shuffle is an expensive operation for large data sets, but our data puddle is only 2,000 rows. The repartition method returns equal sized text files, which are more efficient for downstream consumers. (non-partitioned) It took 241 seconds to count the rows in the data puddle when the data wasn’t repartitioned (on a 5 node cluster). (partitioned) It only took 2 seconds to count the data puddle when the data was partitioned — that’s a 124x speed improvement!
3. DataFrameWriter 分段和分区
1. bucketBy:分段和排序仅适用于持久表。 对于基于文件的数据源,可以对输出进行分类。
peopleDF.write.bucketBy(42, "name").sortBy("age").saveAsTable("people_bucketed")
2. partitionBy:分区则可以同时应用于save和saveAsTable
peopleDF.write.partitionBy("region").format("parquet").save("people_partitioned.parquet")
saveAsTable 保存数据并持久化表
DataFrame可以使用saveAsTable 命令将其作为持久表保存到Hive Metastore中。Spark将为您创建一个默认的本地Hive Metastore(使用Derby)。与createOrReplaceTempView命令不同的是, saveAsTable将实现DataFrame的内容并创建指向Hive Metastore中的数据的指针。即使您的Spark程序重新启动后,永久性表格仍然存在,只要您保持与同一Metastore的连接即可。用于持久表的DataFrame可以通过使用表的名称调用tablea方法来创建SparkSession。
持久化表时您可以自定义表格路径 ,例如df.write.option("path", "/some/path").saveAsTable("t")。当表被删除时,自定义表路径将不会被删除,表数据仍然存在。如果没有指定自定义表格路径,Spark会将数据写入仓库目录下的默认表格路径。当表被删除时,默认的表路径也将被删除。
4. JDBC partition
Spark提供jdbc方法操作数据库,每个RDD分区都会建立一个单独的JDBC连接。 尽管用户可以设置RDD的分区数目,在一些分布式的shuffle操作(例如reduceByKey
和join)之后,RDD又会变成默认的分区数spark.default.parallelism,这种情况下JDBC连接数可能超出数据库的最大连接。Spark 2.1提供numPartitions 参数来设置JDBC读写时的分区数,可以解决前面说的问题。如果写数据时的分区数超过最大值,我们可以在写之前使用方法
coalesce(numPartitions)来减少分区数。
val userDF = spark.read.format("jdbc").options(Map("url" -> url, "dbtable" -> sourceTable, "lowerBound"->"1", "upperBound"->"886500", "partitionColumn"->"user_id", "numPartitions"->"10")).load()
userDF.write.option("maxRecordsPerFile", 10000).mode("overwrite").parquet(outputDirectory)
userDF.repartition(10000).write.mode("overwrite").parquet(outputDirectory)
分区案例
val df = spark.read.format("jdbc").options(Map("url" -> url, "dbtable" -> sourceTable, "lowerBound"->"1", "upperBound"->"825485207", "partitionColumn"->"org_id", "numPartitions"->"10")).load()
(1) jdbc partition: df.write.format("com.databricks.spark.csv").mode("overwrite").save(s"$filePath/$filename"+"_readpar")
(2) maxRecordsPerFile: df.write.option("maxRecordsPerFile", 10000).format("com.databricks.spark.csv").mode("overwrite").save(s"$filePath/$filename"+"_maxRecd")
(3) repartition: df.repartition(4).write.format("com.databricks.spark.csv").mode("overwrite").save(s"$filePath/$filename"+"_repar")
(4) rdd key-value partitionBy: df.rdd.map(r => (r.getInt(1), r)).partitionBy(new HashPartitioner(10)).values.saveAsTextFile(s"$filePath/$filename"+"_rddhash")
(1) jdbc partition: 数据分布不均匀,有些分区数据多有的少; key是有序的,根据bound区间将key分成不同分区
(2) maxRecordsPerFile: 同上,当一个分区条数超过maxRecordsPerFile,会被拆分成多个子分区,同一个Key可能因此被分到不同分区
(3) repartition: 分成同等大小的分区(不能保证每个分区的条数是一样的); key是无序的,同样的key可能在不同分区
(4) rdd key-value partitionBy: 使用partition方法将数据按照一定规则分区,可以自定义分区规则
---------------------
作者:zhangzeyuan56
来源:CSDN
原文:https://blog.csdn.net/zhangzeyuan56/article/details/80935034
版权声明:本文为博主原创文章,转载请附上博文链接!
---------------------
作者:junzhou134
来源:CSDN
原文:https://blog.csdn.net/m0_37138008/article/details/78936029
版权声明:本文为博主原创文章,转载请附上博文链接!
---------------------
作者:JasonLeeblog
来源:CSDN
原文:https://blog.csdn.net/xianpanjia4616/article/details/84328928
版权声明:本文为博主原创文章,转载请附上博文链接!
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 开发者必知的日志记录最佳实践
· SQL Server 2025 AI相关能力初探
· Linux系列:如何用 C#调用 C方法造成内存泄露
· AI与.NET技术实操系列(二):开始使用ML.NET
· 记一次.NET内存居高不下排查解决与启示
· Manus重磅发布:全球首款通用AI代理技术深度解析与实战指南
· 被坑几百块钱后,我竟然真的恢复了删除的微信聊天记录!
· 没有Manus邀请码?试试免邀请码的MGX或者开源的OpenManus吧
· 园子的第一款AI主题卫衣上架——"HELLO! HOW CAN I ASSIST YOU TODAY
· 【自荐】一款简洁、开源的在线白板工具 Drawnix