概述「并查集补集转化」模型&&luoguP1330 封锁阳光大学

奇妙的模型转化以及并查集思想

模型概述

有图$G=(V,E)$,初始所有点为白色,现在要将其中一些点染为黑色,要求染色后满足:$∀(u,v)∈E$,$∃col_u!=col_v$。求最小染色点数。

题目描述

曹是一只爱刷街的老曹,暑假期间,他每天都欢快地在阳光大学的校园里刷街。河蟹看到欢快的曹,感到不爽。河蟹决定封锁阳光大学,不让曹刷街。

阳光大学的校园是一张由N个点构成的无向图,N个点之间由M条道路连接。每只河蟹可以对一个点进行封锁,当某个点被封锁后,与这个点相连的道路就被封锁了,曹就无法在与这些道路上刷街了。非常悲剧的一点是,河蟹是一种不和谐的生物,当两只河蟹封锁了相邻的两个点时,他们会发生冲突。

询问:最少需要多少只河蟹,可以封锁所有道路并且不发生冲突。

输入输出格式

输入格式:

第一行:两个整数N,M

接下来M行:每行两个整数A,B,表示点A到点B之间有道路相连。 

输出格式:

仅一行:如果河蟹无法封锁所有道路,则输出“Impossible”,否则输出一个整数,表示最少需要多少只河蟹。

说明

【数据规模】

1<=N<=10000,1<=M<=100000,任意两点之间最多有一条道路。


 

题目分析

本来想写道图论题的,但看题解时候看到一篇并查集的题解感觉非常奇妙……

常规做法

大力搜索?黑白染色?好像无向图缩环之类的在这道题没什么用。

dp也无能为力,因为虽说和树形dp那里独立集全覆盖有些相像,但是这题是图的形式,有环的约束,也不能简单地缩点。

奇妙的并查集

观察一下要求:

  1. 所有道路都要求被覆盖
  2. 选取满足要求的独立集

诶,那么就是说“敌人的敌人就是我的朋友”咯?

这不就成了[BOI2003]团伙那道题吗?

回顾一下那题,我们可以用$enemy[x]$表示所有$x$的敌人。这种思想可以快速合并不在一个集合内的元素,而且非常巧妙!

姑且就称为补集转化的思想吧。这里是以前写的团伙的博客

(感觉好像有那么一点像2-sat???)

 

 1 #include<bits/stdc++.h>
 2 const int maxn = 10035;
 3 
 4 int sum[maxn],fa[maxn],enemy[maxn];
 5 int n,m,ans;
 6 bool vis[maxn];
 7 
 8 int get(int x){return fa[x]==x?x:fa[x]=get(fa[x]);}
 9 void unions(int x, int y)
10 {
11     int fx = get(x), fy = get(y);
12     fa[fx] = fy, sum[fy] += sum[fx], sum[fx] = 0;
13 }
14 int main()
15 {
16     scanf("%d%d",&n,&m);
17     for (int i=1; i<=n; i++) fa[i] = i, sum[i] = 1;
18     for (int i=1; i<=m; i++)
19     {
20         int a,b,fa,fb;
21         scanf("%d%d",&a,&b);
22         fa = get(a), fb = get(b);
23         if (fa!=fb){
24             if (enemy[a]) unions(enemy[a], fb);
25             if (enemy[b]) unions(enemy[b], fa);
26             enemy[a] = fb, enemy[b] = fa;
27         }
28         else{
29             puts("Impossible");
30             return 0;
31         }
32     }
33     for (int i=1; i<=n; i++)
34     {
35         int x = get(i);
36         if (!vis[x]){
37             int y = get(enemy[x]);
38             ans += std::min(sum[x], sum[y]);
39             vis[x] = vis[y] = 1;
40         }
41     }
42     printf("%d\n",ans);
43     return 0;
44 }

 

 

 

 

 

END

posted @ 2018-07-04 11:01  AntiQuality  阅读(264)  评论(0编辑  收藏  举报