Linux系统调用:brk()和mmap()

关键点:

  1. 什么时候会发生缺页中断?发生缺页中断后,执行了那些操作?
  2. brk和mmap分配的是虚拟内存还是物理内存?什么时候建立映射关系?物理内存是什么时候分配的?
  3. malloc,free和brk,mmap,munmap的关系?
  4. 如何查看进程发生缺页中断的次数?

前置知识:

  1. 每个进程都有独立的虚拟地址空间,进程访问的虚拟地址并不是真正的物理地址;
  2. 虚拟地址可通过每个进程上的页表(在每个进程的内核虚拟地址空间)与物理地址进行映射,获得真正物理地址;
  3. 如果虚拟地址对应物理地址不在物理内存中,则产生缺页中断,真正分配物理地址,同时更新进程的页表;如果此时物理内存已耗尽,则根据内存替换算法淘汰部分页面至物理磁盘中。

一. Linux虚拟地址空间分布

image
自下而上分别为:

  • 只读段:代码,#define定义的变量,只读变量
  • 数据段:全局变量,静态变量等
  • 文件映射区域:一般通过mmap分配,还有共享库的映射区域(libc库等)
  • 内核空间

32 位系统有4G 的地址空间,其中 0x08048000~0xbfffffff 是用户空间,0xc0000000~0xffffffff 是内核空间,包括内核代码和数据、与进程相关的数据结构(如页表、内核栈)等。另外,%esp 执行栈顶,往低地址方向变化;brk/sbrk 函数控制堆顶_edata往高地址方向变化。
64 位系统的虚拟地址空间划分发生了改变:

  1. 地址空间大小不是 232 ,也不是264,而一般是248。因为并不需要 264 这么大的寻址空间,过大空间只会导致资源的浪费。64位Linux一般使用48位来表示虚拟地址空间,40位表示物理地址,这可通过 /proc/cpuinfo 来查看
    address sizes: 40 bits physical, 48 bits virtual
  2. 其中,0x0000000000000000~0x00007fffffffffff 表示用户空间, 0xFFFF800000000000~ 0xFFFFFFFFFFFFFFFF 表示内核空间,共提供 256TB(2^48) 的寻址空间。
    这两个区间的特点是,第 47 位与 48~63 位相同,若这些位为 0 表示用户空间,否则表示内核空间。
  3. 用户空间由低地址到高地址仍然是只读段、数据段、堆、文件映射区域和栈;

二、malloc和free是如何分配和释放内存?

内存分配的原理

从操作系统角度来看,进程分配内存有两种方式,分别由两个系统调用完成:brk和mmap(不考虑共享内存)。

  1. brk是将数据段(.data)的最高地址指针_edata往高地址推;
  2. mmap是在进程的虚拟地址空间中(堆和栈中间,称为文件映射区域的地方)找一块空闲的虚拟内存。
    这两种方式分配的都是虚拟内存,没有分配物理内存。在第一次访问已分配的虚拟地址空间的时候,发生缺页中断,操作系统负责分配物理内存,然后建立虚拟内存和物理内存之间的映射关系。

在标准C库中,提供了malloc/free函数分配释放内存,这两个函数底层就是由brk,mmap,munmap这些系统调用实现的。

发成缺页中断后,执行了那些操作?

  1. 检查虚拟内存地址是否合法?(存疑)
  2. 分配物理内存,如果内存紧张还涉及到内存替换算法
  3. 填写物理页内存内容(读取磁盘,置0,不操作),如果读取了磁盘,那么就是major fault,否则是minor fault
  4. 将虚拟内存和物理内存关联,填写到页表
  5. 重新执行产生缺页中断的指令

C语言的内存分配方式与malloc

C语言跟内存分配方式
(1) 从静态存储区域分配。内存在程序编译的时候就已经分配好,这块内存在程序的整个运行期间都存在。例如全局变量,static变量。
(2) 在栈上创建。在执行函数时,函数内局部变量的存储单元都可以在栈上创建,函数执行结束时这些存储单元自动被释放。栈内存分配运
算内置于处理器的指令集中,效率很高,但是分配的内存容量有限。
(3)从堆上分配,亦称动态内存分配。程序在运行的时候用malloc或new申请任意多少的内存,程序员自己负责在何时用free或delete释放内存。动态内存的生存期由我们决定,使用非常灵活,但问题也最多

C语言跟内存申请相关的函数主要有 alloc,calloc,malloc,free,realloc,sbrk等.其中alloc是向栈申请内存,因此无需释放. malloc分配的内存是位于堆中的,并且没有初始化内存的内容,因此基本上malloc之后,调用函数memset来初始化这部分的内存空间.calloc则将初始化这部分的内存,设置为0. 而realloc则对malloc申请的内存进行大小的调整.申请的内存最终需要通过函数free来释放. 而sbrk则是增加数据段的大小;

malloc/calloc/free基本上都是C函数库实现的,跟OS无关。C函数库内部通过一定的结构来保存当前有多少可用内存.如果程序 malloc的大小超出了库里所留存的空间,那么将首先调用brk系统调用来增加可用空间,然后再分配空间.free时,释放的内存并不立即返回给os, 而是保留在内部结构中. 可以打个比方: brk类似于批发,一次性的向OS申请大的内存,而malloc等函数则类似于零售,满足程序运行时的要求.这套机制类似于缓冲.

使用这套机制的原因: 系统调用不能支持任意大小的内存分配(有的系统调用只支持固定大小以及其倍数的内存申请,这样的话,对于小内存的分配会造成浪费; 系统调用申请内存代价昂贵,涉及到用户态和核心态的转换.

函数malloc()和calloc()都可以用来分配动态内存空间,但两者稍有区别。

在Linux系统上,程序被载入内存时,内核为用户进程地址空间建立了代码段、数据段和堆栈段,在数据段与堆栈段之间的空闲区域用于动态内存分配。

内核数据结构mm_struct中的成员变量start_code和end_code是进程代码段的起始和终止地址,start_data和 end_data是进程数据段的起始和终止地址,start_stack是进程堆栈段起始地址,start_brk是进程动态内存分配起始地址(堆的起始 地址),还有一个 brk(堆的当前最后地址),就是动态内存分配当前的终止地址。

C语言的动态内存分配基本函数是malloc(),在Linux上的基本实现是通过内核的brk系统调用。brk()是一个非常简单的系统调用,只是简单地改变mm_struct结构的成员变量brk的值。

mmap系统调用实现了更有用的动态内存分配功能,可以将一个磁盘文件的全部或部分内容映射到用户空间中,进程读写文件的操作变成了读写内存的操作。在 linux/mm/mmap.c文件的do_mmap_pgoff()函数,是mmap系统调用实现的核心。do_mmap_pgoff()的代码,只是新建了一个vm_area_struct结构,并把file结构的参数赋值给其成员变量vm_file,并没有把文件内容实际装入内存。
image
image

Linux内存管理的基本思想之一,是只有在真正访问一个地址的时候才建立这个地址的物理映射。

posted @ 2022-12-08 18:01  antidogmatist  阅读(915)  评论(0编辑  收藏  举报