博客园  :: 首页  :: 新随笔  :: 联系 :: 订阅 订阅  :: 管理

Spark在standalone中关于core的参数设置

Posted on 2022-02-18 15:54  Antel  阅读(468)  评论(0编辑  收藏  举报

最近发现,在执行pyspark任务时,对pythonFunction的CPU使用率进行限制存在问题,究其根本,还是sparkConf的参数存在问题。

梳理了下spark启动参数中关于core的设置问题

执行spark-submit -h 得到spark启动参数的说明,截取部分关于core的说明

 Cluster deploy mode only:
  --driver-cores NUM          Number of cores used by the driver, only in cluster mode
                              (Default: 1).

 Spark standalone, Mesos and Kubernetes only:
  --total-executor-cores NUM  Total cores for all executors.

 Spark standalone, YARN and Kubernetes only:
  --executor-cores NUM        Number of cores used by each executor. (Default: 1 in
                              YARN and K8S modes, or all available cores on the worker
                              in standalone mode).

 Spark on YARN and Kubernetes only:
  --num-executors NUM         Number of executors to launch (Default: 2).
                              If dynamic allocation is enabled, the initial number of
                              executors will be at least NUM.

由于我们使用的是standalone模式,可以看到,原来并不是所有参数都起作用。

例如--num-executors只适用YARN和Kubernetes。

在standalone中,关于core的设置主要是由--total-executor-cores和--executor-cores进行控制。

  • --total-executor-cores:所有executor的core总数
  • --executor-cores:每个executor的core个数(standalone下,默认是worker上所有可用的core)

发现,这两个参数好像有点冲突,如果只设置--total-executor-cores而不设置--executor-cores是否会出现问题

针对这两个参数的使用,考虑了三种情况进行测试:

  • 仅设置--total-executor-cores:仍会根据--executor-cores的默认值,使用所有空闲的core。并不会根据设置,使用最多--total-executor-cores个数的core
  • 仅设置--executor-cores:会根据数值对core进行设置
  • 同时设置--total-executor-cores和--executor-cores:standalone模式下,没有对executor的设置,则会根据(--total-executor-cores // --executor-cores)对executor的个数进行计算,得到executor个数。再根据worker情况,建立有--executor-cores个core的executor

有兴趣的可以在扒一扒源码看看。

我在测试时使用的是pyspark3.1.2.