Mtcnn进行人脸剪裁和对齐B
Mtcnn进行人脸剪裁和对齐
1 from scipy import misc 2 import tensorflow as tf 3 import detect_face 4 import cv2 5 # import matplotlib.pyplot as plt 6 from PIL import Image 7 import os 8 # import scipy.misc 9 # %pylab inline 10 fin = 'D:\data\male' 11 fout = 'D:\data\\rain\male' 12 minsize = 20 # minimum size of face 13 threshold = [0.6, 0.7, 0.7] # three steps's threshold 14 factor = 0.709 # scale factor 15 margin = 44 16 frame_interval = 3 17 batch_size = 1000 18 image_size = 182 19 input_image_size = 160 20 21 print('Creating networks and loading parameters') 22 23 with tf.Graph().as_default(): 24 gpu_options = tf.GPUOptions(allow_growth=True) 25 sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options, log_device_placement=False)) 26 with sess.as_default(): 27 pnet, rnet, onet = detect_face.create_mtcnn(sess, 'D:\\code\\real-time-deep-face-recognition-master\\20170512-110547') 28 29 30 i= 0 31 32 for file in os.listdir(fin): 33 try: 34 35 file_fullname = fin + '/' + file 36 img = misc.imread(file_fullname) 37 # i+= 1 38 # img = misc.imread(image_path) 39 bounding_boxes, _ = detect_face.detect_face(img, minsize, pnet, rnet, onet, threshold, factor) 40 nrof_faces = bounding_boxes.shape[0] # 人脸数目 41 print(nrof_faces) 42 #print('找到人脸数目为:{}'.format(nrof_faces)) 43 44 # print(bounding_boxes) 45 46 crop_faces = [] 47 if nrof_faces != 0 : 48 for face_position in bounding_boxes: 49 face_position = face_position.astype(int) 50 print(face_position[0:4]) 51 cv2.rectangle(img, (face_position[0], face_position[1]), (face_position[2], face_position[3]), (0, 255, 0), 2) 52 crop = img[face_position[1]:face_position[3], 53 face_position[0]:face_position[2], ] 54 # print(crop) 55 # crop = cv2.resize(crop, (96, 96), interpolation=cv2.INTER_CUBIC) 56 crop_faces.append(crop) 57 img2 = Image.open(file_fullname) 58 a = face_position[0:4] 59 # print('crop_faces:',crop_faces) 60 # a = [face_position[0:4]] 61 box = (a) 62 roi = img2.crop(box) 63 i = roi.resize((224, 224)) 64 65 out_path = fout + '/' + file 66 67 i.save(out_path) 68 print('success') 69 else: 70 pass 71 except: 72 pass