liblinear使用总结

liblinear是libsvm的线性核的改进版本,专门适用于百万数据量的分类。正好适用于我这次数据挖掘的实验。

 

liblinear用法和libsvm很相似,我是用的是.exe文件,利用python的subprocess向控制台发送命令即可完成本次试验。

 

其中核心两句即

train train.txt

predict test.txt train.txt.model output.txt

 

由于是线性核,没有设置参数c、g

 

对于50W篇文章模型训练仅需340秒,50W篇文章的预测仅需6秒

 

  1 from subprocess import *
  2 import time
  3 
  4 time = time.time
  5 
  6 start_time = time()
  7 print("训练")
  8 cmd = "train train.txt"
  9 Popen(cmd, shell = True, stdout = PIPE).communicate()
 10 print("训练结束",str(time() - start_time))
 11 
 12 
 13 start_time = time()
 14 print("预测")
 15 cmd = "predict test.txt train.txt.model output.txt"
 16 Popen(cmd, shell = True).communicate()
 17 print("预测结束",str(time() - start_time))
 18 
 19 
 20 #进行统计
 21 #读测试集真实label
 22 start_time = time()
 23 print("统计")
 24 test_filename = "test.txt"
 25 f = open(test_filename,"r",encoding = "utf-8")
 26 real_class = []
 27 for line in f:
 28     real_class.append(line[0])
 29 
 30 #总样本
 31 total_sample = len(real_class)
 32 
 33 #读预测结果label
 34 predict_filename = "output.txt"
 35 f_predict = open(predict_filename,"r",encoding = "utf-8")
 36 s = f_predict.read()
 37 predict_class = s.split()
 38 
 39 #对预测正确的文章进行计数
 40 T = 0
 41 for real, predict in zip(real_class,predict_class):
 42     if int(real) == int(predict):
 43         T += 1
 44 accuracy  = T / total_sample * 100
 45 print("正确率 为", str(accuracy) + "%")
 46 
 47 
 48 # class_label = ["0","1","2","3","4","5","6","7","8","9"]
 49 num_to_cate = {0:"it",1:"体育",2:"军事",3:"金融",4:"健康",5:"汽车",6:"房产",7:"文化",8:"教育",9:"娱乐"}
 50 
 51 class_label = ["it","体育","军事","金融","健康","汽车","房产","文化","教育","娱乐"]
 52 
 53 predict_precision = dict.fromkeys(class_label,1.0)
 54 predict_true = dict.fromkeys(class_label,1.0)
 55 
 56 predict_recall = dict.fromkeys(class_label,1.0)
 57 predict_F = dict.fromkeys(class_label,0.0)
 58 # print(str(predict_precision))
 59 # print(str(predict_precision))
 60 # print(str(predict_recall))
 61 # print(str(predict_true))
 62 mat = dict.fromkeys(class_label,{})
 63 for k,v in mat.items():
 64     mat[k] = dict.fromkeys(class_label,0)
 65 
 66 # print(str(mat))
 67 
 68 for real, predict in zip(real_class,predict_class):
 69     real = int(real)
 70     predict = int(predict)
 71     # print(num_to_cate[real])
 72     # print(num_to_cate[predict])
 73     mat[num_to_cate[real]][num_to_cate[predict]] += 1
 74     predict_precision[num_to_cate[predict]] += 1
 75     predict_recall[num_to_cate[real]] += 1
 76 
 77     if int(real) == int(predict):
 78         predict_true[num_to_cate[predict]] += 1
 79 
 80 # print(str(predict_precision))
 81 # print(str(predict_recall))
 82 # print(str(predict_true))
 83 
 84 #输出混淆矩阵
 85 for k, v in mat.items():
 86     print(k + ":" + str(v))
 87 
 88 #计算精确率和召回率
 89 for x in range(len(class_label)):
 90     # x =  str(x)
 91     predict_precision[num_to_cate[x]] = predict_true[num_to_cate[x]] / predict_precision[num_to_cate[x]]
 92     predict_recall[num_to_cate[x]] = predict_true[num_to_cate[x]] / predict_recall[num_to_cate[x]]
 93 
 94 # print(str(predict_precision))
 95 # print(str(predict_recall))
 96 # print(str(predict_true))
 97 
 98 #计算F测度
 99 for x in range(len(class_label)):
100     # x = str(x)
101     predict_F[num_to_cate[x]] = 2 * predict_recall[num_to_cate[x]] * predict_precision[num_to_cate[x]] / (predict_precision[num_to_cate[x]] + predict_recall[num_to_cate[x]])
102 
103 print("统计结束",str(time() - start_time))
104 print("精确率为",str(predict_precision))
105 print("召回率为",str(predict_recall))
106 print("F测度为",str(predict_F))
107 
108 print("保存结果")
109 final_result_filename = "./finalresult.txt"
110 f = open(final_result_filename,"w",encoding = "utf-8")
111 for k, v in mat.items():
112     f.write(k + ":" + str(v) + "\n")
113 
114 f.write("\n")
115 f.write("正确率为" + str(accuracy) + "%" + "\n\n")
116 f.write("精确率为" + str(predict_precision) + "\n\n")
117 f.write("召回率为" + str(predict_recall) + "\n\n")
118 f.write("F测度为" + str(predict_F) + "\n\n")
119 print("保存结果结束")
120 
121 
122 # cate_to_num = {"it":0,"体育":1,"军事":2,"华人":3,"国内":4,"国际":5,"房产":6,"文娱":7,"社会":8,"财经":9}
123 # num_to_cate = {0:"it",1:"体育",2:"军事",3:"华人",4:"国内",5:"国际",6:"房产",7:"文娱",8:"社会",9:"财经"}

 

posted on 2017-12-02 21:20  Stephenatalie  阅读(4201)  评论(0编辑  收藏  举报