1. 目标
设计一个程序,使用OpenMP并行化实现矩阵乘法。给定两个矩阵 A 和 B,矩阵大小均为1024*1024,你的任务是计算它们的乘积 C。
要求:
(1)、使用循环结构体的知识点,包括for循环体并行化、变量规约属性与子句reduction、循环调度策略与子句schedule以及嵌套循环与子句collapse。
(2)、实现OpenMP并行化以加速矩阵乘法的计算。
(3)、考虑内存一致性,确保数据在并行计算过程中的正确性。
(4)、可选:实现线程亲核性,将线程绑定到特定的CPU核心上执行。
2. 测试简介
使用对比串行和并行,及 collapse 和 reduction 的效率。
3. 测试代码
#include <stdio.h>
#include <omp.h>
#include <sys/time.h>
#include <stdlib.h>
void gemm_1(int* A,int* B,long* C,int N,int NT);
void gemm_2(int* A,int* B,long* C,int N,int NT);
void gemm_3(int* A,int* B,long* C,int N,int NT);
void gemm_4(int* A,int* B,long* C,int N,int NT);
void gemm_5(int* A,int* B,long* C,int N,int NT);
void gemm_6(int* A,int* B,long* C,int N,int NT);
void gemm_7(int* A,int* B,long* C,int N,int NT);
void gemm_8(int* A,int* B,long* C,int N,int NT);
void main(int argc,char** argv)
{
if(argc!=4 && argc!=3)
{
printf("shoule param: ./exe [(int)para1:select func] [(int)para2: dim] [(int)para3 thread_nums]\n");
return;
}
int func=1;
int N=12;
int NT=1;
if(argc==3)
{
func = atoi(argv[1]);
N = atoi(argv[2]);
}
else if(argc==4)
{
func = atoi(argv[1]);
N = atoi(argv[2]);
NT = atoi(argv[3]);
}
int r,c,k;
long sum=0;
int* A = calloc(N*N,sizeof(int));
int* B = calloc(N*N,sizeof(int));
long* C = calloc(N*N,sizeof(long));
// 初始化
for(int r=0;r<N;r++)
{
for(int c=0;c<N;c++)
A[r*N+c] = B[r*N+c] = r+c;
}
switch (func)
{
case 1:
NT = 1;
gemm_1(A,B,C,N,NT);
break;
case 2:
gemm_2(A,B,C,N,NT);
break;
case 3:
gemm_3(A,B,C,N,NT);
break;
case 4:
NT = 1;
gemm_4(A,B,C,N,NT);
break;
case 5: //忽略,无法 collapse(5)。计算错误
// gemm_5(A,B,C,N,NT);
break;
case 6:
NT = 1;
gemm_6(A,B,C,N,NT);
break;
case 7:
gemm_7(A,B,C,N,NT);
break;
case 8:
gemm_8(A,B,C,N,NT);
break;
default:
break;
}
free(A);
free(B);
free(C);
}
long sum(long* C,int n)
{
long sum=0;
for(int i=0;i<n*n;i++)
sum+=C[i];
return sum;
}
void print_matrix(long* matrix, int rows, int cols)
{
printf("matrix:\n");
for (size_t i = 0; i < rows; i++)
{
for (size_t j = 0; j < cols; j++)
printf("%ld\t",matrix[i*cols+j]);
printf("\n");
}
}
void print_matrixI(int* matrix, int rows, int cols)
{
printf("matrix:\n");
for (size_t i = 0; i < rows; i++)
{
for (size_t j = 0; j < cols; j++)
printf("%d\t",matrix[i*cols+j]);
printf("\n");
}
}
(1) 矩阵不分块 串行
void gemm_1(int* A,int* B,long* C,int N,int NT)
{
struct timeval start,end;
float time;
int r,c,k;
//串行计算代码
gettimeofday(&start,NULL); //开始时间
for(r=0;r<N;r++)//A 行遍历
{
for(c=0;c<N;c++)//B 列遍历
{
// for循环 变量规约
long sum=0;
for(k=0;k<N;k++)//A B K方向遍历
sum += A[r*N+k] * B[k*N+c];
C[r*N+c] = sum;
}
}
gettimeofday(&end,NULL);
time = end.tv_sec-start.tv_sec+(end.tv_usec-start.tv_usec)/1e6;
printf("func %s N %d threads_num %d sum %ld useSec %f\n",__func__,N,NT,sum(C,N),time);
// print_matrix(C,N,N);
}
(2) 矩阵不分块 并行 collapse(2)
void gemm_2(int* A,int* B,long* C,int N,int NT)
{
struct timeval start,end;
float time;
//串行计算代码
gettimeofday(&start,NULL); //开始时间
omp_set_num_threads(NT);
// 使用collapse(3) C[r][c] 的不同数据再不同进程之间,会造成数据竞争,需要原子操作,造成速度过慢。
// 使用collapse(3) for 默认循环指标变量私有,需要private(k)
#pragma omp parallel for collapse(2) schedule(guided) proc_bind(close)
for(int r=0;r<N;r++)//A 行遍历
{
for(int c=0;c<N;c++)//B 列遍历
{
#if 0 //临界区+collapse(3)
for(int k=0;k<N;k++)//A B K方向遍历
{
#pragma omp critical
C[r*N+c] += A[r*N+k] * B[k*N+c];
}
#else
long sum=0; //使用局部变量减少传入参数引用
for(int k=0;k<N;k++)//A B K方向遍历
sum += A[r*N+k] * B[k*N+c];
C[r*N+c] = sum;
#endif
}
}
gettimeofday(&end,NULL);
time = end.tv_sec-start.tv_sec+(end.tv_usec-start.tv_usec)/1e6;
printf("func %s N %d threads_num %d sum %ld useSec %f\n",__func__,N,NT,sum(C,N),time);
// print_matrixI(A,N,N);
// printf("-----\n");
// print_matrix(C,N,N);
}
(3) 矩阵不分块 并行 collapse(2)+ reduction
void gemm_3(int* A,int* B,long* C,int N,int NT)
{
struct timeval start,end;
float time;
int r,c,k;
//串行计算代码
gettimeofday(&start,NULL); //开始时间
omp_set_num_threads(NT);
#pragma omp parallel for collapse(2) schedule(guided) proc_bind(close)
for(r=0;r<N;r++)//A 行遍历
{
for(c=0;c<N;c++)//B 列遍历
{
// for循环 变量规约 默认k私有
long sum=0;
#pragma omp parallel for reduction(+:sum) schedule(guided) proc_bind(close)
for(k=0;k<N;k++)//A B K方向遍历
sum += A[r*N+k] * B[k*N+c];
C[r*N+c] = sum;
}
}
gettimeofday(&end,NULL);
time = end.tv_sec-start.tv_sec+(end.tv_usec-start.tv_usec)/1e6;
printf("func %s N %d threads_num %d sum %ld useSec %f\n",__func__,N,NT,sum(C,N),time);
// print_matrix(C,N,N);
}
(4) 矩阵一维行列分块 A块 4N,B块 N4,串行,K在外层
void gemm_4(int* A,int* B,long* C,int N,int NT)
{
struct timeval start,end;
float time;
int r,c,k;
//串行计算代码
gettimeofday(&start,NULL); //开始时间
for(r=0;r<N;r+=4)//A 行遍历
{
for(c=0;c<N;c+=4)//B 列遍历
{
for(int k=0;k<N;k++) //K方向遍历
{
for(int nr=0;nr<4;nr++) //A块内行遍历
{
for(int nc=0;nc<4;nc++) //B快内列遍历
C[(r+nr)*N+c+nc] += A[(r+nr)*N+k] * B[k*N+c+nc];
}
}
}
}
gettimeofday(&end,NULL);
time = end.tv_sec-start.tv_sec+(end.tv_usec-start.tv_usec)/1e6;
printf("func %s N %d threads_num %d sum %ld useSec %f\n",__func__,N,NT,sum(C,N),time);
// print_matrix(C,N,N);
}
(5) 矩阵一维行列分块 A块 4N,B块 N4,并行,K在外层,collapse。2层外 3层内循环,无法 collapse(5)。
void gemm_5(int* A,int* B,long* C,int N,int NT)
{
struct timeval start,end;
float time;
int r,c,k;
//串行计算代码
gettimeofday(&start,NULL); //开始时间
omp_set_num_threads(NT);
#pragma omp parallel for collapse(5) schedule(guided) proc_bind(close)
for(r=0;r<N;r+=4)//A 行遍历
{
for(c=0;c<N;c+=4)//B 列遍历
{
for(int k=0;k<N;k++) //K方向遍历
{
for(int nr=0;nr<4;nr++) //A块内行遍历
{
for(int nc=0;nc<4;nc++) //B快内列遍历
{
C[(r+nr)*N+c+nc] += A[(r+nr)*N+k] * B[k*N+c+nc];
}
}
}
}
}
gettimeofday(&end,NULL);
time = end.tv_sec-start.tv_sec+(end.tv_usec-start.tv_usec)/1e6;
printf("func %s N %d threads_num %d sum %ld useSec %f\n",__func__,N,NT,sum(C,N),time);
// print_matrix(C,N,N);
}
(6) 矩阵一维行列分块 A块 4N,B块 N4,串行,K在内层。
void gemm_6(int* A,int* B,long* C,int N,int NT)
{
struct timeval start,end;
float time;
int r,c,k;
//串行计算代码
gettimeofday(&start,NULL); //开始时间
for(r=0;r<N;r+=4)//A 行遍历
{
for(c=0;c<N;c+=4)//B 列遍历
{
for(int nr=0;nr<4;nr++) //A块内行遍历
{
for(int nc=0;nc<4;nc++) //B快内列遍历
{
long sum =0;
for(int k=0;k<N;k++) //K方向遍历
sum += A[(r+nr)*N+k] * B[k*N+c+nc];
C[(r+nr)*N+c+nc] = sum;
}
}
}
}
gettimeofday(&end,NULL);
time = end.tv_sec-start.tv_sec+(end.tv_usec-start.tv_usec)/1e6;
printf("func %s N %d threads_num %d sum %ld useSec %f\n",__func__,N,NT,sum(C,N),time);
// print_matrix(C,N,N);
}
(7) 矩阵一维行列分块 A块 4N,B块 N4,并行,K在内层,collapse(2 + 3)
void gemm_7(int* A,int* B,long* C,int N,int NT)
{
struct timeval start,end;
float time;
int r,c,k;
//串行计算代码
gettimeofday(&start,NULL); //开始时间
omp_set_num_threads(NT);
#pragma omp parallel for collapse(2) schedule(guided) proc_bind(close)
for(r=0;r<N;r+=4)//A 行遍历
{
for(c=0;c<N;c+=4)//B 列遍历
{
#pragma omp parallel for collapse(3) schedule(guided) proc_bind(close)
for(int nr=0;nr<4;nr++) //A块内行遍历
{
for(int nc=0;nc<4;nc++) //B快内列遍历
{
for(int k=0;k<N;k++) //K方向遍历
C[(r+nr)*N+c+nc] += A[(r+nr)*N+k] * B[k*N+c+nc];
}
}
}
}
gettimeofday(&end,NULL);
time = end.tv_sec-start.tv_sec+(end.tv_usec-start.tv_usec)/1e6;
printf("func %s N %d threads_num %d sum %ld useSec %f\n",__func__,N,NT,sum(C,N),time);
// print_matrix(C,N,N);
}
(8) 矩阵一维行列分块 A块 4N,B块 N4,并行,K在内层,collapse (2+2)+ reduction
void gemm_8(int* A,int* B,long* C,int N,int NT)
{
struct timeval start,end;
float time;
int r,c,k;
//串行计算代码
gettimeofday(&start,NULL); //开始时间
omp_set_num_threads(NT);
#pragma omp parallel for collapse(2) private(r,c) schedule(guided) proc_bind(close)
for(r=0;r<N;r+=4)//A 行遍历
{
for(c=0;c<N;c+=4)//B 列遍历
{
#pragma omp parallel for collapse(2) schedule(guided) proc_bind(close)
for(int nr=0;nr<4;nr++) //A块内行遍历
{
for(int nc=0;nc<4;nc++) //B快内列遍历
{
long sum =0;
#pragma omp parallel for reduction(+:sum) schedule(guided) proc_bind(close)
for(int k=0;k<N;k++) //K方向遍历
sum += A[(r+nr)*N+k] * B[k*N+c+nc];
C[(r+nr)*N+c+nc] = sum;
}
}
}
}
gettimeofday(&end,NULL);
time = end.tv_sec-start.tv_sec+(end.tv_usec-start.tv_usec)/1e6;
printf("func %s N %d threads_num %d sum %ld useSec %f\n",__func__,N,NT,sum(C,N),time);
// print_matrix(C,N,N);
}
4. 测试数据
串行耗时(秒) |
FIELD2 |
FIELD3 |
FIELD4 |
FIELD5 |
函数名 |
线程数\维度 |
128 |
512 |
1024 |
gemm_1 矩阵不分块 串行 |
1 |
0.01786 |
1.52600 |
47.10980 |
gemm_4 矩阵一维行列分块 A块 4N,B块 N4,串行,K在外层 |
1 |
0.03303 |
2.13628 |
22.47993 |
gemm-6 矩阵一维行列分块 A块 4N,B块 N4,串行,K在内层, |
1 |
0.02078 |
1.64609 |
65.69423 |
并行耗时(秒) |
|
|
|
|
函数名 |
线程数\维度 |
128 |
512 |
1024 |
gemm_2 矩阵不分块 并行 collapse(2) |
4 |
0.00515 |
0.36207 |
13.16278 |
|
8 |
0.00303 |
0.18024 |
6.34872 |
|
16 |
0.00382 |
0.12891 |
3.39717 |
|
32 |
0.00471 |
0.10166 |
2.02269 |
gemm_3 矩阵不分块 并行 collapse(2) + reduction |
4 |
0.01050 |
0.54038 |
11.69852 |
|
8 |
0.00593 |
0.23172 |
6.51897 |
|
16 |
0.00807 |
0.16333 |
3.60325 |
|
32 |
0.01048 |
0.12297 |
2.12352 |
gemm_7 矩阵一维行列分块 A块 4N,B块 N4,并行,K在内层,collapse(2+3) |
4 |
0.00893 |
0.71235 |
18.41659 |
|
8 |
0.00509 |
0.33909 |
8.78864 |
|
16 |
0.00803 |
0.23421 |
4.56388 |
|
32 |
0.01073 |
0.15445 |
2.65277 |
gemm_8 矩阵一维行列分块 A块 4N,B块 N4,并行,K在内层,collapse(2+2) + reduction |
4 |
0.01120 |
0.58372 |
16.70111 |
|
8 |
0.00622 |
0.26817 |
7.68263 |
|
16 |
0.00756 |
0.14903 |
4.24847 |
|
32 |
0.01052 |
0.13294 |
2.71985 |
5. 结果分析
(1). 关于线程数:较小的数据规模应用较低的线程数,否则线程创建销毁影响效率。较大的数据规模应采用更大的线程数量。总之数据规模应该与线程数量匹配才能效率较大。
(2). 关于reduction:效率没有开启向量化优化 O1及以上有效(测试了1024维度4/32线程加速明显),在问题规模较小(512维度及以下)即使没有采用向量化优化也比 reduction 效率高。
(3). 关于 collapse 和 reduction:测试了 collapse(2+3) 和 collapse(2+2) + reduction,在数据规模较小及线程数少(128维度和8线程及以下)全collapse效率高,除此之外随着数据规模和线程数增加,collapse 的任务规模数量级增加,效率不如 reduction。