写Java也得了解CPU–CPU缓存

  CPU,一般认为写C/C++的才需要了解,写高级语言的(Java/C#/pathon…)并不需要了解那么底层的东西。我一开始也是这么想的,但直到碰到LMAX的Disruptor,以及马丁的博文,才发现写Java的,更加不能忽视CPU。经过一段时间的阅读,希望总结一下自己的阅读后的感悟。本文主要谈谈CPU缓存对java编程的影响,不涉及具体CPU缓存的机制和实现。

  现代CPU的缓存结构一般分三层,L1,L2和L3。如下图所示:

  

 写Java也得了解CPU–CPU缓存

 

  级别越小的缓存,越接近CPU, 意味着速度越快且容量越少

  L1是最接近CPU的,它容量最小,速度最快,每个核上都有一个L1 Cache(准确地说每个核上有两个L1 Cache, 一个存数据 L1d Cache, 一个存指令 L1i Cache);

  L2 Cache 更大一些,例如256K,速度要慢一些,一般情况下每个核上都有一个独立的L2 Cache;

  L3 Cache是三级缓存中最大的一级,例如12MB,同时也是最慢的一级,在同一个CPU插槽之间的核共享一个L3 Cache。

  当CPU运作时,它首先去L1寻找它所需要的数据,然后去L2,然后去L3。如果三级缓存都没找到它需要的数据,则从内存里获取数据。寻找的路径越长,耗时越长。所以如果要非常频繁的获取某些数据,保证这些数据在L1缓存里。这样速度将非常快。下表表示了CPU到各缓存和内存之间的大概速度:

  从CPU到 大约需要的CPU周期 大约需要的时间(单位ns)

  寄存器 1 cycle

  L1 Cache ~3-4 cycles ~0.5-1 ns

  L2 Cache ~10-20 cycles ~3-7 ns

  L3 Cache ~40-45 cycles ~15 ns

  跨槽传输 ~20 ns

  内存 ~120-240 cycles ~60-120ns

  利用CPU-Z可以查看CPU缓存的信息:

  

 写Java也得了解CPU–CPU缓存

 

  在linux下可以使用下列命令查看:

  

 写Java也得了解CPU–CPU缓存

 

  有了上面对CPU的大概了解,我们来看看缓存行(Cache line)。缓存,是由缓存行组成的。一般一行缓存行有64字节(由上图”64-byte line size”可知)。所以使用缓存时,并不是一个一个字节使用,而是一行缓存行、一行缓存行这样使用;换句话说,CPU存取缓存都是按照一行,为最小单位操作的

  这意味着,如果没有好好利用缓存行的话,程序可能会遇到性能的问题。可看下面的程序:

  public class L1CacheMiss {

  private static final int RUNS = 10;

  private static final int DIMENSION_1 = 1024 * 1024;

  private static final int DIMENSION_2 = 6;

  private static long[][] longs;

  public static void main(String[] args) throws Exception {

  Thread.sleep(10000);

  longs = new long[DIMENSION_1][];

  for (int i = 0; i < DIMENSION_1; i++) {

  longs[i] = new long[DIMENSION_2];

  for (int j = 0; j < DIMENSION_2; j++) {

  longs[i][j] = 0L;

  }

  }

  System.out.println("starting....");

  long sum = 0L;

  for (int r = 0; r < RUNS; r++) {

  final long start = System.nanoTime();

  //slow

  // for (int j = 0; j < DIMENSION_2; j++) {

  // for (int i = 0; i < DIMENSION_1; i++) {

  // sum += longs[i][j];

  // }

  // }

  //fast

  for (int i = 0; i < DIMENSION_1; i++) {

  for (int j = 0; j < DIMENSION_2; j++) {

  sum += longs[i][j];

  }

  }

  System.out.println((System.nanoTime() - start));

  }

  }

  }

  复制代码

  以我所使用的Xeon E3 CPU和64位操作系统和64位JVM为例,如这里所说,假设编译器采用行主序存储数组。

  64位系统,Java数组对象头固定占16字节(未证实),而long类型占8个字节。所以16+8*6=64字节,刚好等于一条缓存行的长度

  

 写Java也得了解CPU–CPU缓存

 

  如32-36行代码所示,每次开始内循环时,从内存抓取的数据块实际上覆盖了longs[0]到longs[5]的全部数据(刚好64字节)。因此,内循环时所有的数据都在L1缓存可以命中,遍历将非常快。

  假如,将32-36行代码注释而用25-29行代码代替,那么将会造成大量的缓存失效。因为每次从内存抓取的都是同行不同列的数据块(如longs[0]到longs[5]的全部数据),但循环下一个的目标,却是同列不同行(如longs[0][0]下一个是longs[1][0],造成了longs[0][1]-longs[0][5]无法重复利用)。运行时间的差距如下图,单位是微秒(us):

  

 写Java也得了解CPU–CPU缓存

 

  最后,我们都希望需要的数据都在L1缓存里,但事实上经常事与愿违,所以缓存失效 (Cache Miss)是常有的事,也是我们需要避免的事。

  一般来说,缓存失效有三种情况:

  1. 第一次访问数据, 在cache中根本不存在这条数据, 所以cache miss, 可以通过prefetch解决。

  2. cache冲突, 需要通过补齐来解决(伪共享的产生)。

  3. cache满, 一般情况下我们需要减少操作的数据大小, 尽量按数据的物理顺序访问数据。

posted @ 2017-01-09 14:43  安吉吉吉  阅读(257)  评论(0编辑  收藏  举报