HDOj-1016 Prime Ring Problem
Prime Ring Problem
Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 21132 Accepted Submission(s): 9457
Problem Description
A ring is compose of n circles as shown in diagram. Put natural number 1, 2, ..., n into each circle separately, and the sum of numbers in two adjacent circles should be a prime.
Note: the number of first circle should always be 1.
Note: the number of first circle should always be 1.
Input
n (0 < n < 20).
Output
The output format is shown as sample below. Each row represents a series of circle numbers in the ring beginning from 1 clockwisely and anticlockwisely. The order of numbers must satisfy the above requirements. Print solutions in lexicographical order.
You are to write a program that completes above process.
Print a blank line after each case.
You are to write a program that completes above process.
Print a blank line after each case.
Sample Input
6
8
Sample Output
Case 1:
1 4 3 2 5 6
1 6 5 2 3 4
Case 2:
1 2 3 8 5 6 7 4
1 2 5 8 3 4 7 6
1 4 7 6 5 8 3 2
1 6 7 4 3 8 5 2
思路:dfs
#include<stdio.h> #include<string.h> int n; int isp[45]; int cir[22]; int vis[22]; void is_prime() { int i,j; for(i = 2;i <= 40;i ++) { for(j = 2;j <= i/2;j ++) if(i%j==0) isp[i] = 1; } return ; } void dfs(int cnt) { int i,j; if(cnt == n && !isp[cir[0]+cir[n-1]]) { for(j = 0;j < n-1;j ++) printf("%d ",cir[j]); printf("%d\n",cir[n-1]); } else { for(i = 2;i <= n;i ++) { if(!vis[i]&&!isp[i+cir[cnt-1]]) { cir[cnt] = i; vis[i] = 1; dfs(cnt+1); vis[i] = 0; } } } } int main() { int i,c = 0; is_prime(); while(~scanf("%d",&n)) { memset(vis,0,sizeof(vis)); c++; printf("Case %d:\n",c); for(i = 0;i < n;i ++) cir[i] = i+1; dfs(1); printf("\n"); } return 0; }