Description
The least common multiple (LCM) of a set of positive integers is the smallest positive integer which is divisible by all the numbers in the set. For example, the LCM of 5, 7 and 15 is 105.
Input
Input will consist of multiple problem instances. The first line of the
input will contain a single integer indicating the number of problem
instances. Each instance will consist of a single line of the form m n1
n2 n3 ... nm where m is the number of integers in the set and n1 ... nm
are the integers. All integers will be positive and lie within the range
of a 32-bit integer.
Output
For each problem instance, output a single line containing the
corresponding LCM. All results will lie in the range of a 32-bit
integer.
Sample Input
2
3 5 7 15
6 4 10296 936 1287 792 1
Sample Output
105
10296
这道题就是要求多个数的最小公倍数;
思路很简单,就是每两个数求他们的最小公倍数,然后用求出的最小公倍数与下一个数
1 #include<stdio.h> 2 int gcd(int a,int b) 3 { 4 if(b==0) return a; 5 return gcd(b,a%b); 6 } 7 int main() 8 { 9 int t; 10 int n,a,b,i; 11 int cnt; 12 scanf("%d",&t); 13 while(t--) 14 { 15 scanf("%d",&n); 16 cnt=a=1; 17 for(i=1;i<=n;i++) 18 { 19 scanf("%d",&b); 20 cnt=a/gcd(a,b)*b; 21 a=cnt; 22 } 23 printf("%d\n",cnt); 24 } 25 return 0; 26 }